Deconvolution denoising in the f-x domain has some defects when facing situations like complicated geology structure, coherent noise of steep dip angles, and uneven spatial sampling. To solve these problems, a new fil...Deconvolution denoising in the f-x domain has some defects when facing situations like complicated geology structure, coherent noise of steep dip angles, and uneven spatial sampling. To solve these problems, a new filtering method is proposed, which uses the generalized S transform which has good time-frequency concentration criterion to transform seismic data from the time-space to time-frequency-space domain (t-f-x). Then in the t-f-x domain apply Empirical Mode Decomposition (EMD) on each frequency slice and clear the Intrinsic Mode Functions (IMFs) that noise dominates to suppress coherent and random noise. The model study shows that the high frequency component in the first IMF represents mainly noise, so clearing the first IMF can suppress noise. The EMD filtering method in the t-f-x domain after generalized S transform is equivalent to self-adaptive f-k filtering that depends on position, frequency, and truncation characteristics of high wave numbers. This filtering method takes local data time-frequency characteristic into consideration and is easy to perform. Compared with AR predictive filtering, the component that this method filters is highly localized and contains relatively fewer low wave numbers and the filter result does not show over-smoothing effects. Real data processing proves that the EMD filtering method in the t-f-x domain after generalized S transform can effectively suppress random and coherent noise of steep dips.展开更多
We give algorithms to factorize large integers in the duality computer. We provide three duality algorithms for factorization based on a naive factorization method, the Shor algorithm in quantum computing, and the Fer...We give algorithms to factorize large integers in the duality computer. We provide three duality algorithms for factorization based on a naive factorization method, the Shor algorithm in quantum computing, and the Fermat's method in classical computing. All these algorithms may be polynomial in the input size.展开更多
The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary...The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary functions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types of solutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functions appropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the number of the peaks.展开更多
The first generation coherence algorithm(namely C1 algorithm) is based on the statistical cross-correlation theory, which calculates the coherency of seismic data along both in-line and cross-line. The work, based on ...The first generation coherence algorithm(namely C1 algorithm) is based on the statistical cross-correlation theory, which calculates the coherency of seismic data along both in-line and cross-line. The work, based on texture technique, makes full use of seismic information in different directions and the difference of multi-traces, and proposes a novel methodology named the texture coherence algorithm for seismic reservoir characterization, for short TEC algorithm. Besides, in-line and cross-line directions, it also calculates seismic coherency in 45° and 135° directions deviating from in-line. First, we clearly propose an optimization method and a criterion which structure graylevel co-occurrence matrix parameters in TEC algorithm. Furthermore, the matrix to measure the difference between multi-traces is constructed by texture technique, resulting in horizontal constraints of texture coherence attribute. Compared with the C1 algorithm, the TEC algorithm based on graylevel matrix is of the feature that is multi-direction information fusion and keeps the simplicity and high speed, even it is of multi-trace horizontal constraint, leading to significantly improved resolution. The practical application of the TEC algorithm shows that the TEC attribute is superior to both the C1 attribute and amplitude attribute in identifying faults and channels, and it is as successful as the third generation coherence.展开更多
Changes in global climate intensify the hydrological cycle, directly influence precipitation, evaporation, runoff, and cause the re-distribution of water resources in time and space. The aridity index (AI), defined ...Changes in global climate intensify the hydrological cycle, directly influence precipitation, evaporation, runoff, and cause the re-distribution of water resources in time and space. The aridity index (AI), defined as the ratio of annual precipitation to annual potential evapotranspiration, is a widely used numerical indicator to quantify the degree of dryness at a given location. This study examined the effects of climate change on Al in China during 1961-2015. The results showed that the nationally averaged AI experienced a notable interdecadal transition in 1993, characterized by increasing AI (wetter) between 1961 and 1993, and decreasing AI (drier) after 1993. Overall, the decreased solar radiation (solar dimming) was the main factor affected the nationally averaged AI during 1961-1993, while the relative humidity dominated the variations of nationally averaged AI during 1993-2015. However, the roles of individual factors on the changes in AI vary in different subregions. Precipitation is one of the important contributing factors for the changes orAl in almost all subregions, except the Mid-Lower Yangtze and Huaihe basins. Solar radiation has been significantly decreased during 1961-1993 in South China, Southwest China, Mid-Lower Yangtze and Huaihe basins, and the Tibetan Plateau. Therefore, it dominated the trends of AI in these subregions. The relative humidity mainly affected the Mid-Lower Yangtze and Huaihe basins, Southwest China, and the Tibetan Plateau during 1993-2015, hence dominated the trends of Al in these subregions. The changes of temperature and wind speed, however, played a relatively weak role in the variations of AI.展开更多
The nanometer coherent structure evolution of spinodal decomposition and ordering coexistence phase transformation in Fe-24Al alloys is investigated by the microscopic phase field kinetic model.The results show that t...The nanometer coherent structure evolution of spinodal decomposition and ordering coexistence phase transformation in Fe-24Al alloys is investigated by the microscopic phase field kinetic model.The results show that the concentration and long-range order parameters all continuously change towards to their equilibrium values during phase transformation.With the increase of elastic interaction energy,the anisotropy along [01] or [10] elastic soft direction is more obvious and the time reaching equilibrium state is also shortened.According to the results,the formation of nanometer coherent structures during phase transformation is composed of the initial decreasing stage of order degree stage,the incubation stage,the continuous increasing stage of concentration order parameter and long-range order parameter,and the later stable stage.The spinodal decomposition and ordering is interaction;the initial ordering stage is a necessary condition of the coexistence phase transformation.The nanometer coherent structures are not found to grow during the whole phase transformation.The simulation results are in accordance with the results in experiment obtained by the aging treatment in Fe-24Al alloys.展开更多
基金sponsored by the National Natural Science Foundation of China (Grant No. 41174114)the National Natural Science Foundation of China and China Petroleum & Chemical Corporation Co-funded Project (No. 40839905)
文摘Deconvolution denoising in the f-x domain has some defects when facing situations like complicated geology structure, coherent noise of steep dip angles, and uneven spatial sampling. To solve these problems, a new filtering method is proposed, which uses the generalized S transform which has good time-frequency concentration criterion to transform seismic data from the time-space to time-frequency-space domain (t-f-x). Then in the t-f-x domain apply Empirical Mode Decomposition (EMD) on each frequency slice and clear the Intrinsic Mode Functions (IMFs) that noise dominates to suppress coherent and random noise. The model study shows that the high frequency component in the first IMF represents mainly noise, so clearing the first IMF can suppress noise. The EMD filtering method in the t-f-x domain after generalized S transform is equivalent to self-adaptive f-k filtering that depends on position, frequency, and truncation characteristics of high wave numbers. This filtering method takes local data time-frequency characteristic into consideration and is easy to perform. Compared with AR predictive filtering, the component that this method filters is highly localized and contains relatively fewer low wave numbers and the filter result does not show over-smoothing effects. Real data processing proves that the EMD filtering method in the t-f-x domain after generalized S transform can effectively suppress random and coherent noise of steep dips.
基金The project supported by the 973 Program under Grant No. 2006CB921106, National Natural Science Foundation of China under Grant Nos. 10325521 and 60433050, and the Key Project 306020 and Science Research Fund of Doctoval Program of the Ministry of Education of China
文摘We give algorithms to factorize large integers in the duality computer. We provide three duality algorithms for factorization based on a naive factorization method, the Shor algorithm in quantum computing, and the Fermat's method in classical computing. All these algorithms may be polynomial in the input size.
文摘The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary functions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types of solutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functions appropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the number of the peaks.
基金Project(2013CB228600)supported by the National Basic Research Program of ChinaProject(2011A-3606)supported by the CNPC "12.5" Program of China
文摘The first generation coherence algorithm(namely C1 algorithm) is based on the statistical cross-correlation theory, which calculates the coherency of seismic data along both in-line and cross-line. The work, based on texture technique, makes full use of seismic information in different directions and the difference of multi-traces, and proposes a novel methodology named the texture coherence algorithm for seismic reservoir characterization, for short TEC algorithm. Besides, in-line and cross-line directions, it also calculates seismic coherency in 45° and 135° directions deviating from in-line. First, we clearly propose an optimization method and a criterion which structure graylevel co-occurrence matrix parameters in TEC algorithm. Furthermore, the matrix to measure the difference between multi-traces is constructed by texture technique, resulting in horizontal constraints of texture coherence attribute. Compared with the C1 algorithm, the TEC algorithm based on graylevel matrix is of the feature that is multi-direction information fusion and keeps the simplicity and high speed, even it is of multi-trace horizontal constraint, leading to significantly improved resolution. The practical application of the TEC algorithm shows that the TEC attribute is superior to both the C1 attribute and amplitude attribute in identifying faults and channels, and it is as successful as the third generation coherence.
基金partially supported by the National Natural Science Foundation of China (41790424 and 41505043)
文摘Changes in global climate intensify the hydrological cycle, directly influence precipitation, evaporation, runoff, and cause the re-distribution of water resources in time and space. The aridity index (AI), defined as the ratio of annual precipitation to annual potential evapotranspiration, is a widely used numerical indicator to quantify the degree of dryness at a given location. This study examined the effects of climate change on Al in China during 1961-2015. The results showed that the nationally averaged AI experienced a notable interdecadal transition in 1993, characterized by increasing AI (wetter) between 1961 and 1993, and decreasing AI (drier) after 1993. Overall, the decreased solar radiation (solar dimming) was the main factor affected the nationally averaged AI during 1961-1993, while the relative humidity dominated the variations of nationally averaged AI during 1993-2015. However, the roles of individual factors on the changes in AI vary in different subregions. Precipitation is one of the important contributing factors for the changes orAl in almost all subregions, except the Mid-Lower Yangtze and Huaihe basins. Solar radiation has been significantly decreased during 1961-1993 in South China, Southwest China, Mid-Lower Yangtze and Huaihe basins, and the Tibetan Plateau. Therefore, it dominated the trends of AI in these subregions. The relative humidity mainly affected the Mid-Lower Yangtze and Huaihe basins, Southwest China, and the Tibetan Plateau during 1993-2015, hence dominated the trends of Al in these subregions. The changes of temperature and wind speed, however, played a relatively weak role in the variations of AI.
文摘The nanometer coherent structure evolution of spinodal decomposition and ordering coexistence phase transformation in Fe-24Al alloys is investigated by the microscopic phase field kinetic model.The results show that the concentration and long-range order parameters all continuously change towards to their equilibrium values during phase transformation.With the increase of elastic interaction energy,the anisotropy along [01] or [10] elastic soft direction is more obvious and the time reaching equilibrium state is also shortened.According to the results,the formation of nanometer coherent structures during phase transformation is composed of the initial decreasing stage of order degree stage,the incubation stage,the continuous increasing stage of concentration order parameter and long-range order parameter,and the later stable stage.The spinodal decomposition and ordering is interaction;the initial ordering stage is a necessary condition of the coexistence phase transformation.The nanometer coherent structures are not found to grow during the whole phase transformation.The simulation results are in accordance with the results in experiment obtained by the aging treatment in Fe-24Al alloys.