In this paper, the variable separation approach is used to obtain localized coherent structures of the (2+1)-dimensional generalized Davey-Stewarson equations: iqt + 1/2(qxx + qyy) + (R+ S)q = O, Rx=-σ/2|q|2y Sy = -...In this paper, the variable separation approach is used to obtain localized coherent structures of the (2+1)-dimensional generalized Davey-Stewarson equations: iqt + 1/2(qxx + qyy) + (R+ S)q = O, Rx=-σ/2|q|2y Sy = -σ/2|q|2/x.Applying a special Backlund transformation and introducing arbitrary functions of the seed solutions, an abundance of the localized structures of this model is derived. By selecting the arbitrary functions appropriately, some special typesof localized excitations such as dromions, dromion lattice, breathers, and instantons are constructed.展开更多
This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous ba...This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous balance method, we find that the richness of the localized coherent structures of the model is caused by the entrance of two variable-separated arbitrary functions. For some special selections of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, breathers, instantons and ring solitons.展开更多
A simple and direct method is applied to solving the (2+1)-dimensional perturbed Ablowitz–Kaup–Newell–Segur system (PAKNS). Starting from a special B?cklund transformation and the variable separation approach, we c...A simple and direct method is applied to solving the (2+1)-dimensional perturbed Ablowitz–Kaup–Newell–Segur system (PAKNS). Starting from a special B?cklund transformation and the variable separation approach, we convert the PAKNS system into the simple forms, which are four variable separation equations, then obtain a quite general solution. Some special localized coherent structures like fractal dromions and fractal lumps of this model are constructed by selecting some types of lower-dimensional fractal patterns.展开更多
The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary...The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary functions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types of solutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functions appropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the number of the peaks.展开更多
文摘In this paper, the variable separation approach is used to obtain localized coherent structures of the (2+1)-dimensional generalized Davey-Stewarson equations: iqt + 1/2(qxx + qyy) + (R+ S)q = O, Rx=-σ/2|q|2y Sy = -σ/2|q|2/x.Applying a special Backlund transformation and introducing arbitrary functions of the seed solutions, an abundance of the localized structures of this model is derived. By selecting the arbitrary functions appropriately, some special typesof localized excitations such as dromions, dromion lattice, breathers, and instantons are constructed.
文摘This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous balance method, we find that the richness of the localized coherent structures of the model is caused by the entrance of two variable-separated arbitrary functions. For some special selections of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, breathers, instantons and ring solitons.
文摘A simple and direct method is applied to solving the (2+1)-dimensional perturbed Ablowitz–Kaup–Newell–Segur system (PAKNS). Starting from a special B?cklund transformation and the variable separation approach, we convert the PAKNS system into the simple forms, which are four variable separation equations, then obtain a quite general solution. Some special localized coherent structures like fractal dromions and fractal lumps of this model are constructed by selecting some types of lower-dimensional fractal patterns.
文摘The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary functions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types of solutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functions appropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the number of the peaks.