期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一个新(2+1)维非线性演化方程的相干孤子结构 被引量:22
1
作者 张解放 黄文华 郑春龙 《物理学报》 SCIE EI CAS CSCD 北大核心 2002年第12期2676-2682,共7页
用分离变量法研究了新 (2 +1)维非线性演化方程的相干孤子结构 .由于B cklund变换和变量分离步骤中引入了作为种子解的任意函数 ,得到了新 (2 +1)维非线性演化方程丰富的孤子解 .合适地选择任意函数 ,孤子解可以是solitoffs ,dromions ,... 用分离变量法研究了新 (2 +1)维非线性演化方程的相干孤子结构 .由于B cklund变换和变量分离步骤中引入了作为种子解的任意函数 ,得到了新 (2 +1)维非线性演化方程丰富的孤子解 .合适地选择任意函数 ,孤子解可以是solitoffs ,dromions ,dromion格子 ,呼吸子和瞬子 .呼吸子不仅在幅度、形状 ,各峰间距离 ,甚至在峰的数目上都进行了呼吸 . 展开更多
关键词 相干孤子结构 新(2+1)维非线性演化方程 分离变量法 孤子 非线性偏微分方程
原文传递
General Solution and Localized COherent Soliton Structures of the (2+1)—Dimensional Generalized Davey—Stewarson Equations 被引量:1
2
作者 ZHENGChun-Long HUANGWen-Hua 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第6X期653-656,共4页
In this paper, the variable separation approach is used to obtain localized coherent structures of the (2+1)-dimensional generalized Davey-Stewarson equations: iqt + 1/2(qxx + qyy) + (R+ S)q = O, Rx=-σ/2|q|2y Sy = -... In this paper, the variable separation approach is used to obtain localized coherent structures of the (2+1)-dimensional generalized Davey-Stewarson equations: iqt + 1/2(qxx + qyy) + (R+ S)q = O, Rx=-σ/2|q|2y Sy = -σ/2|q|2/x.Applying a special Backlund transformation and introducing arbitrary functions of the seed solutions, an abundance of the localized structures of this model is derived. By selecting the arbitrary functions appropriately, some special typesof localized excitations such as dromions, dromion lattice, breathers, and instantons are constructed. 展开更多
关键词 非线性偏微分方程 Darey-Stewa-Son方程 相干孤子结构
下载PDF
Exotic Localized Coherent Structures of the (2+1)—Dimensional Dispersive Long—Wave Equation 被引量:11
3
作者 ZHANGJie-Fang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第3期277-282,共6页
This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous ba... This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous balance method, we find that the richness of the localized coherent structures of the model is caused by the entrance of two variable-separated arbitrary functions. For some special selections of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, breathers, instantons and ring solitons. 展开更多
关键词 extended homogeneous balance method coherent soliton structures dispersive long-wave equation the (2+1)-dimensions
下载PDF
Exact Excitation and Abundant Localized Coherent Soliton Structures of (2+1)—Dimensional Perturbed AKNS System 被引量:2
4
作者 ZHENGChun-Long ZHANGJie-Fang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第1期9-14,共6页
A simple and direct method is applied to solving the (2+1)-dimensional perturbed Ablowitz–Kaup–Newell–Segur system (PAKNS). Starting from a special B?cklund transformation and the variable separation approach, we c... A simple and direct method is applied to solving the (2+1)-dimensional perturbed Ablowitz–Kaup–Newell–Segur system (PAKNS). Starting from a special B?cklund transformation and the variable separation approach, we convert the PAKNS system into the simple forms, which are four variable separation equations, then obtain a quite general solution. Some special localized coherent structures like fractal dromions and fractal lumps of this model are constructed by selecting some types of lower-dimensional fractal patterns. 展开更多
关键词 variable separation approach perturbed AKNS system exact solution coherent structure
下载PDF
Exotic Localized Coherent Structures of New(2+1)-Dimensional Soliton Equation 被引量:2
5
作者 ZHANGJie-Fang HUANGWen-Hua 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第5期517-522,共6页
The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary... The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary functions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types of solutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functions appropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the number of the peaks. 展开更多
关键词 variable separation approach coherent structures new (2+1)-dimensional soliton equation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部