Microstructures of creep-aged 2524 (A1-4.3Cu-1.5Mg) aged at 170 ℃ with various stresses (0, 173 and 250 MPa) were studied on a creep machine. Ageing hardness curves under various stresses were plotted and the cor...Microstructures of creep-aged 2524 (A1-4.3Cu-1.5Mg) aged at 170 ℃ with various stresses (0, 173 and 250 MPa) were studied on a creep machine. Ageing hardness curves under various stresses were plotted and the corresponding microstructures were characterized by transmission electron microscopy (TEM). The results show that the value of peak hardness is increased, while the time to reach the peak hardness is reduced under an external stress. Meanwhile, the length of S(Al2CuMg) phase is shorter and the number density of S phases is larger in the creep-aged alloy. The predominant contribution to the peak hardness can be ascribed to the GPB zones with an elastic stress.展开更多
The stress aging behavior of Al-Cu alloy under various applied stresses, i.e., elastic stress, yield stress and plasticdeformation stress, was investigated using single crystals. The resulting microstructures and the ...The stress aging behavior of Al-Cu alloy under various applied stresses, i.e., elastic stress, yield stress and plasticdeformation stress, was investigated using single crystals. The resulting microstructures and the yield strength were examined bytransmission electron microscopy (TEM) and compression tests, respectively. The results indicate that an elastic stress of 15 MPa ishigh enough to influence the precipitation distribution of θ′ during aging at 180℃. The applied stress loading along [116]Aldirection results in increased number density of θ′ on (001)Al habit planes. This result becomes more significant with increasingapplied stress and leads to lower yield strength of Al-Cu single crystals during aging. Moreover, the generation of the preferentialorientation of θ′ was discussed by the effect of the dislocation induced by applied stress as well as the role of the misfit between theθ′-precipitate and Al matrix. The results are in agreement with the effect of the latter one.展开更多
The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. T...The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. The initial oxidationtemperature of MoS2 is 450℃, while the formation of CaMoO4 and CaSO4 occurs above 500℃. The whole calcification reactionsare nearly completed between 600 and 650℃. However, raising the temperature further helps for the formation of CaMoO4 but isdisadvantageous to sulfur fixing rate and molybdenum retention rate. Calcification efficiency of Ca-based additives follows theorder: Ca(OH)2〉CaO〉CaCO3. With increasing the dosage of Ca(OH)2, the molybdenum retention rate and sulfur-fixing rate rise, butexcessive dosages would consume more acid during leaching process. The appropriate mass ratio of Ca(OH)2 to molybdenumconcentrate is 1:1. When roasted at 650 ℃ for 90 min, the molybdenum retention rate and the sulfur-fixing rate of low-grademolybdenum concentrate reach 100% and 92.92%, respectively, and the dissolution rate of molybdenum achieves 99.12% withcalcines being leached by sulphuric acid.展开更多
The transformation behavior of Ni Ti Nb based alloys was analysed.The absence of R phase transformation in these alloys is related to the stress field in the NiTi matrix.The thermal mismatch stress was calculated by...The transformation behavior of Ni Ti Nb based alloys was analysed.The absence of R phase transformation in these alloys is related to the stress field in the NiTi matrix.The thermal mismatch stress was calculated by the Eshelby method in Ni Ti Nb alloys.The results show that the mean matrix elastic stress field is isostatic tensile,there is no preferred stress in [111] B 2 direction.The mean matrix stress from the thermal misfit between NiTi matrix and β Nb particle is too small to induce dislocations.All the factors tend to inhibit R phase transformation.展开更多
The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show t...The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show that the quench sensitivity of 6063 alloy is lower than that of 6061 or 6082 alloy,and the critical temperature ranges from 300 to 410℃ with the nose temperature of about 360℃.From TEM analysis,heterogeneous precipitate β-Mg2Si is prior to nucleate on the(AlxFeySiz) dispersoids in the critical temperature range,and grows up most rapidly at the nose temperature of 360℃.The heterogeneous precipitation leads to a low concentration of solute,which consequently reduces the amount of the strengthening phase β'' after aging.In the large-scale industrial production of 6063 alloy,the cooling rate during quenching should be enhanced as high as possible in the quenching sensitive temperature range(410-300℃) to suppress the heterogeneous precipitation to get optimal mechanical properties,and it should be slowed down properly from the solution temperature to 410℃ and below 300℃ to reduce the residual stress.展开更多
The Ce-La-O system was investigated via experiments and thermodynamic modeling. A series of CeO2-LaO1.5 mixtures were prepared by co-precipitation technique and examined by X-ray diffraction. Mutual solubilities betwe...The Ce-La-O system was investigated via experiments and thermodynamic modeling. A series of CeO2-LaO1.5 mixtures were prepared by co-precipitation technique and examined by X-ray diffraction. Mutual solubilities between LaO1.5 and CeO2 at 1273 K were determined. Using the new experimental data together with literature information, a set of self-consistent thermodynamic parameters for the CeO2-LaO1.5 system were optimized. Combined with thermodynamic descriptions of Ce-O and La-O systems from literature, several property diagrams of Ce-La-O system were calculated and used to explain oxidation process of the Ce-La alloys. The fluorite phase is the unique oxidation products for most of the Ce-La alloys.展开更多
A new technology for fabrication of silica on silicon arrayed waveguide grating (AWG) based on deep etching and thermal oxidation is presented.Using this method,a silicon layer is remained at the side of waveguide.The...A new technology for fabrication of silica on silicon arrayed waveguide grating (AWG) based on deep etching and thermal oxidation is presented.Using this method,a silicon layer is remained at the side of waveguide.The stress distribution and effective refractive index of waveguide fabricated by this approach are calculated using finite element and finite difference beam propagation method,respectively.The results of these studies indicate that the stress of silica on silicon optical waveguide can be matched in parallel and vertical direction and AWG polarization dependent wavelength (PDλ) can be reduced effectively due to side-silicon layer.展开更多
The fundamental mechanism of the cracking formation was investigated for the as-cast GH4151 superalloy.By analyzing the characteristics of cracking,the cracking mechanism was determined to be the cold crack formed dur...The fundamental mechanism of the cracking formation was investigated for the as-cast GH4151 superalloy.By analyzing the characteristics of cracking,the cracking mechanism was determined to be the cold crack formed during the cooling process.And cold cracking is closely related to severe segregation,complex precipitates and uneven γ'phase distribution.During cooling process,cracks were generated around the precipitates due to their different linear shrinkage coefficients.The annealing treatment process controlling the residual stress,the size and morphology of γ'phase was proposed.The annealing treatment plays a role in reducing residual stress through decreasing the thermal gradient and controlling the size distribution of γ'phase to reduce the strain concentration around the precipitate phases.展开更多
A series of single track clads of Inconel 625 alloy were fabricated by laser solid forming.To achieve the high dimensional accuracy and excellent mechanical properties,the effect of processing parameters on the geomet...A series of single track clads of Inconel 625 alloy were fabricated by laser solid forming.To achieve the high dimensional accuracy and excellent mechanical properties,the effect of processing parameters on the geometry,the formation of Laves phase and the residual stress was investigated.The results show that laser power and scanning speed had a dramatical influence on the width and height of single-track clads.According to the columnar to equiaxed transition curve of Inconel 625,the grain morphology can be predicted during the LSF process.With the increasing laser power and the decreasing scanning speed,the segregation degree of Si,Nb,Mo,the volume fraction and size of Laves phase increased.Vickers indentation was used to demonstrate that optimizing processing parameter can achieve the minimum residual tensile stress.展开更多
The behavior of stress wave propagation in rock walls and the process of rock bursts were simulated by application tests of material similar to rock. Results show that 1) the attenuation characteristics of stress wave...The behavior of stress wave propagation in rock walls and the process of rock bursts were simulated by application tests of material similar to rock. Results show that 1) the attenuation characteristics of stress waves were related to the material proper-ties, stress waves attenuate more quickly in soft material and 2) when the explosion load was applied at the top of the roadway, the number and the length of the cracks increased with a decrease in the distance between the explosive point and roof of the roadway. When the distance was 280 mm, only some chips appeared near the source, when the distance was 210 mm, some small cracks started to appear near the road-rib and when the distance was reduced to 140 mm, larger cracks appeared at the road-rib. It can be concluded that, under a given stress the number of cracks is closely related to the intensity of stress waves. The cracks in the sur-rounding rock can be reduced by controlling the intensity of the stress waves and rock bursts can be avoided to some extent by pre-venting the formation of layered crack structures. A new experimental approach has been provided for studying rock bursts by using physical simulation.展开更多
Based on the bulk free energy density and the degenerate mobility constructed by the quartic double-well potential function,a phase field model is established to simulate the evolution of intragranular microvoids due ...Based on the bulk free energy density and the degenerate mobility constructed by the quartic double-well potential function,a phase field model is established to simulate the evolution of intragranular microvoids due to surface diffusion in a stress field.The corresponding phase field governing equations are derived.The evolution of elliptical microvoids with different stressesΛ,aspect ratiosβand linewidths hˉis calculated using the mesh adaptation finite element method and the reliability of the procedure is verified.The results show that there exist critical values of the stressΛc,the aspect ratioβc and the linewidth hˉc of intragranular microvoids under equivalent biaxial tensile stress.When Λ≥Λ_(c),β≥β_(c) or h≤h_(c),the elliptical microvoids are instable with an extending crack tip.WhenΛ<Λ_(c),β<β_(c) or hˉ>h_(c),the elliptical microvoids gradually cylindricalize and remain a stable shape.The instability time decreases with increasing the stress or the aspect ratio,while increases with increasing the linewidth.In addition,for the interconnects containing two elliptical voids not far apart,the stress will promote the merging of the voids.展开更多
基金Project (2009BAG12A07-B02) supported by the National Science & Technology Pillar Program during the 11th Five-Year Plan Period,ChinaProject supported by Innovative Research Team in University of Liaoning Province,ChinaProject (51001022) supported by the National Natural Science Foundation of China
文摘Microstructures of creep-aged 2524 (A1-4.3Cu-1.5Mg) aged at 170 ℃ with various stresses (0, 173 and 250 MPa) were studied on a creep machine. Ageing hardness curves under various stresses were plotted and the corresponding microstructures were characterized by transmission electron microscopy (TEM). The results show that the value of peak hardness is increased, while the time to reach the peak hardness is reduced under an external stress. Meanwhile, the length of S(Al2CuMg) phase is shorter and the number density of S phases is larger in the creep-aged alloy. The predominant contribution to the peak hardness can be ascribed to the GPB zones with an elastic stress.
基金Project(51375503)supported by the National Natural Science Foundation of China
文摘The stress aging behavior of Al-Cu alloy under various applied stresses, i.e., elastic stress, yield stress and plasticdeformation stress, was investigated using single crystals. The resulting microstructures and the yield strength were examined bytransmission electron microscopy (TEM) and compression tests, respectively. The results indicate that an elastic stress of 15 MPa ishigh enough to influence the precipitation distribution of θ′ during aging at 180℃. The applied stress loading along [116]Aldirection results in increased number density of θ′ on (001)Al habit planes. This result becomes more significant with increasingapplied stress and leads to lower yield strength of Al-Cu single crystals during aging. Moreover, the generation of the preferentialorientation of θ′ was discussed by the effect of the dislocation induced by applied stress as well as the role of the misfit between theθ′-precipitate and Al matrix. The results are in agreement with the effect of the latter one.
基金Project(51304245)supported by the National Natural Science Foundation of ChinaProject(2014T70691)supported by the Postdoctoral Science Foundation of China+1 种基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject supported by the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. The initial oxidationtemperature of MoS2 is 450℃, while the formation of CaMoO4 and CaSO4 occurs above 500℃. The whole calcification reactionsare nearly completed between 600 and 650℃. However, raising the temperature further helps for the formation of CaMoO4 but isdisadvantageous to sulfur fixing rate and molybdenum retention rate. Calcification efficiency of Ca-based additives follows theorder: Ca(OH)2〉CaO〉CaCO3. With increasing the dosage of Ca(OH)2, the molybdenum retention rate and sulfur-fixing rate rise, butexcessive dosages would consume more acid during leaching process. The appropriate mass ratio of Ca(OH)2 to molybdenumconcentrate is 1:1. When roasted at 650 ℃ for 90 min, the molybdenum retention rate and the sulfur-fixing rate of low-grademolybdenum concentrate reach 100% and 92.92%, respectively, and the dissolution rate of molybdenum achieves 99.12% withcalcines being leached by sulphuric acid.
文摘The transformation behavior of Ni Ti Nb based alloys was analysed.The absence of R phase transformation in these alloys is related to the stress field in the NiTi matrix.The thermal mismatch stress was calculated by the Eshelby method in Ni Ti Nb alloys.The results show that the mean matrix elastic stress field is isostatic tensile,there is no preferred stress in [111] B 2 direction.The mean matrix stress from the thermal misfit between NiTi matrix and β Nb particle is too small to induce dislocations.All the factors tend to inhibit R phase transformation.
文摘The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show that the quench sensitivity of 6063 alloy is lower than that of 6061 or 6082 alloy,and the critical temperature ranges from 300 to 410℃ with the nose temperature of about 360℃.From TEM analysis,heterogeneous precipitate β-Mg2Si is prior to nucleate on the(AlxFeySiz) dispersoids in the critical temperature range,and grows up most rapidly at the nose temperature of 360℃.The heterogeneous precipitation leads to a low concentration of solute,which consequently reduces the amount of the strengthening phase β'' after aging.In the large-scale industrial production of 6063 alloy,the cooling rate during quenching should be enhanced as high as possible in the quenching sensitive temperature range(410-300℃) to suppress the heterogeneous precipitation to get optimal mechanical properties,and it should be slowed down properly from the solution temperature to 410℃ and below 300℃ to reduce the residual stress.
基金Project (51171069) supported by the National Natural Science Foundation of ChinaProject (S2011010004094) supported by Natural Science Foundation of Guangdong Province, ChinaProject support by the Special Talents of Higher Education Office of Guangdong Province ,China
文摘The Ce-La-O system was investigated via experiments and thermodynamic modeling. A series of CeO2-LaO1.5 mixtures were prepared by co-precipitation technique and examined by X-ray diffraction. Mutual solubilities between LaO1.5 and CeO2 at 1273 K were determined. Using the new experimental data together with literature information, a set of self-consistent thermodynamic parameters for the CeO2-LaO1.5 system were optimized. Combined with thermodynamic descriptions of Ce-O and La-O systems from literature, several property diagrams of Ce-La-O system were calculated and used to explain oxidation process of the Ce-La alloys. The fluorite phase is the unique oxidation products for most of the Ce-La alloys.
文摘A new technology for fabrication of silica on silicon arrayed waveguide grating (AWG) based on deep etching and thermal oxidation is presented.Using this method,a silicon layer is remained at the side of waveguide.The stress distribution and effective refractive index of waveguide fabricated by this approach are calculated using finite element and finite difference beam propagation method,respectively.The results of these studies indicate that the stress of silica on silicon optical waveguide can be matched in parallel and vertical direction and AWG polarization dependent wavelength (PDλ) can be reduced effectively due to side-silicon layer.
基金Project(50974016)supported by the National Natural Science Foundation of China。
文摘The fundamental mechanism of the cracking formation was investigated for the as-cast GH4151 superalloy.By analyzing the characteristics of cracking,the cracking mechanism was determined to be the cold crack formed during the cooling process.And cold cracking is closely related to severe segregation,complex precipitates and uneven γ'phase distribution.During cooling process,cracks were generated around the precipitates due to their different linear shrinkage coefficients.The annealing treatment process controlling the residual stress,the size and morphology of γ'phase was proposed.The annealing treatment plays a role in reducing residual stress through decreasing the thermal gradient and controlling the size distribution of γ'phase to reduce the strain concentration around the precipitate phases.
基金Project(2018YFB1105804)supported by the National Key R&D Program of ChinaProject(2020-TS-06)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China。
文摘A series of single track clads of Inconel 625 alloy were fabricated by laser solid forming.To achieve the high dimensional accuracy and excellent mechanical properties,the effect of processing parameters on the geometry,the formation of Laves phase and the residual stress was investigated.The results show that laser power and scanning speed had a dramatical influence on the width and height of single-track clads.According to the columnar to equiaxed transition curve of Inconel 625,the grain morphology can be predicted during the LSF process.With the increasing laser power and the decreasing scanning speed,the segregation degree of Si,Nb,Mo,the volume fraction and size of Laves phase increased.Vickers indentation was used to demonstrate that optimizing processing parameter can achieve the minimum residual tensile stress.
基金Projects 50490270 and 50634050 supported by the National Natural Science Foundation of China2007CB209400 by the National Basic Research Program of China2006A039 by the Youth Scientific Research Foundation of China University of Mining & Technology
文摘The behavior of stress wave propagation in rock walls and the process of rock bursts were simulated by application tests of material similar to rock. Results show that 1) the attenuation characteristics of stress waves were related to the material proper-ties, stress waves attenuate more quickly in soft material and 2) when the explosion load was applied at the top of the roadway, the number and the length of the cracks increased with a decrease in the distance between the explosive point and roof of the roadway. When the distance was 280 mm, only some chips appeared near the source, when the distance was 210 mm, some small cracks started to appear near the road-rib and when the distance was reduced to 140 mm, larger cracks appeared at the road-rib. It can be concluded that, under a given stress the number of cracks is closely related to the intensity of stress waves. The cracks in the sur-rounding rock can be reduced by controlling the intensity of the stress waves and rock bursts can be avoided to some extent by pre-venting the formation of layered crack structures. A new experimental approach has been provided for studying rock bursts by using physical simulation.
基金supported by the Natural Science Foundation of Jiangsu Province of China (No. BK20141407)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Based on the bulk free energy density and the degenerate mobility constructed by the quartic double-well potential function,a phase field model is established to simulate the evolution of intragranular microvoids due to surface diffusion in a stress field.The corresponding phase field governing equations are derived.The evolution of elliptical microvoids with different stressesΛ,aspect ratiosβand linewidths hˉis calculated using the mesh adaptation finite element method and the reliability of the procedure is verified.The results show that there exist critical values of the stressΛc,the aspect ratioβc and the linewidth hˉc of intragranular microvoids under equivalent biaxial tensile stress.When Λ≥Λ_(c),β≥β_(c) or h≤h_(c),the elliptical microvoids are instable with an extending crack tip.WhenΛ<Λ_(c),β<β_(c) or hˉ>h_(c),the elliptical microvoids gradually cylindricalize and remain a stable shape.The instability time decreases with increasing the stress or the aspect ratio,while increases with increasing the linewidth.In addition,for the interconnects containing two elliptical voids not far apart,the stress will promote the merging of the voids.