On the basis of mutual compensation of mobility and threshold voltage temperature effects, a stable CMOS band-gap voltage reference circuit was designed and fabricated in CSMC-HJ 0.6 μm CMOS technology. Operating fro...On the basis of mutual compensation of mobility and threshold voltage temperature effects, a stable CMOS band-gap voltage reference circuit was designed and fabricated in CSMC-HJ 0.6 μm CMOS technology. Operating from 0 to 85 ℃ under a supply voltage ranging from 4.5 to 5.5 V, the voltage reference circuit offers an output reference voltage ranging from 1.122 to 1.176 V and a voltage variation less than ±3.70%. The chip size including bonding pads is only 0.4 mm×0.4 mm and the power dissipation falls inside the scope of 28.3 to 48.8 mW operating at a supply voltage of 4.5 to 5.5 V.展开更多
The original nonlinear chirp scaling(NCS) algorithm was extended for high precision processing of the highly squinted curvilinear trajectory synthetic aperture radar(CTSAR).Based on the analysis of slant range model a...The original nonlinear chirp scaling(NCS) algorithm was extended for high precision processing of the highly squinted curvilinear trajectory synthetic aperture radar(CTSAR).Based on the analysis of slant range model and the frequency spectrum characteristics of the echo signal,a novel nonlinear chirp scaling function and more complex phase compensation factors with both velocity and acceleration parameters were proposed in the new algorithm for accommodation to curvilinear trajectory.The processing flow and computational complexity of modified NCS algorithm were fundamentally the same as the original NCS algorithm.However,the higher order phase compensation,range cell migration correction(RCMC) and range-variant secondary range compression(SRC) caused by the non-linear aperture and the severe range-azimuth coupling were accomplished accurately and efficiently without interpolation.Simulation results show that data acquired with a curvilinear aperture and a squint angle up to about 50° for X-band can be processed with no evident degradation of impulse response function.展开更多
文摘On the basis of mutual compensation of mobility and threshold voltage temperature effects, a stable CMOS band-gap voltage reference circuit was designed and fabricated in CSMC-HJ 0.6 μm CMOS technology. Operating from 0 to 85 ℃ under a supply voltage ranging from 4.5 to 5.5 V, the voltage reference circuit offers an output reference voltage ranging from 1.122 to 1.176 V and a voltage variation less than ±3.70%. The chip size including bonding pads is only 0.4 mm×0.4 mm and the power dissipation falls inside the scope of 28.3 to 48.8 mW operating at a supply voltage of 4.5 to 5.5 V.
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(61101182) supported by the National Natural Science Foundation for Young Scientists of ChinaProject(11JJ1010) supported by the Natural Science Foundation for Distinguished Young Scholars of Hunan Province,China
文摘The original nonlinear chirp scaling(NCS) algorithm was extended for high precision processing of the highly squinted curvilinear trajectory synthetic aperture radar(CTSAR).Based on the analysis of slant range model and the frequency spectrum characteristics of the echo signal,a novel nonlinear chirp scaling function and more complex phase compensation factors with both velocity and acceleration parameters were proposed in the new algorithm for accommodation to curvilinear trajectory.The processing flow and computational complexity of modified NCS algorithm were fundamentally the same as the original NCS algorithm.However,the higher order phase compensation,range cell migration correction(RCMC) and range-variant secondary range compression(SRC) caused by the non-linear aperture and the severe range-azimuth coupling were accomplished accurately and efficiently without interpolation.Simulation results show that data acquired with a curvilinear aperture and a squint angle up to about 50° for X-band can be processed with no evident degradation of impulse response function.