Stochastic modeling techniques have been widely applied to oil-gas reservoir lithofacies. Markov chain simulation~ however~ is still under development~ mainly because of the difficulties in reasonably defining conditi...Stochastic modeling techniques have been widely applied to oil-gas reservoir lithofacies. Markov chain simulation~ however~ is still under development~ mainly because of the difficulties in reasonably defining conditional probabilities for multi-dimensional Markov chains and determining transition probabilities for horizontal strike and dip directions. The aim of this work is to solve these problems. Firstly~ the calculation formulae of conditional probabilities for multi-dimensional Markov chain models are proposed under the full independence and conditional independence assumptions. It is noted that multi-dimensional Markov models based on the conditional independence assumption are reasonable because these models avoid the small-class underestimation problem. Then~ the methods for determining transition probabilities are given. The vertical transition probabilities are obtained by computing the transition frequencies from drilling data~ while the horizontal transition probabilities are estimated by using well data and the elongation ratios according to Walther's law. Finally~ these models are used to simulate the reservoir lithofacies distribution of Tahe oilfield in China. The results show that the conditional independence method performs better than the full independence counterpart in maintaining the true percentage composition and reproducing lithofacies spatial features.展开更多
The ice water content(IWC) distribution in a mixed-phase cloud system was investigated using Cloud-Sat data,aircraft measurements,and the Weather Research and Forecasting(WRF) model.Simulated precipitation and IWC wer...The ice water content(IWC) distribution in a mixed-phase cloud system was investigated using Cloud-Sat data,aircraft measurements,and the Weather Research and Forecasting(WRF) model.Simulated precipitation and IWC were in general agreement with rain gauge,sat-ellite,and aircraft observations.The cloud case was char-acterized by a predominant cold layer and high IWC throughout the cloud-development and precipitation stages.The CloudSat-retrieved products suggested that the IWC was distributed from 4.0 to 8.0 km,with the maximum values(up to 0.5 g m-3) at 5.0-6.0 km at the earlymature stage of cloud development.High IWC(up to 0.8 g m-3) was also detected by airborne probes at 4.2 and 3.6 km at the late-mature stage.The WRF model simulation re-vealed that the predominant riming facilitated rapid ac-cumulation of high IWC at 3.0-6.0 km.展开更多
Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the thr...Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the three-dimensional(3D)surface reconstruction of coarse aggregate particles using occlusion-free multi-view imaging.The system captures synchronized images of particles in free fall,employing a matte sphere and a nonlinear optimization approach to estimate the camera projection matrices.A pre-trained segmentation model is utilized to eliminate the background of the images.The Shape from Silhouettes(SfS)algorithm is then applied to generate 3D voxel data,followed by the Marching Cubes algorithm to construct the 3D surface contour.Validation against standard parts and diverse coarse aggregate particles confirms the method's high accuracy,with an average measurement precision of 0.434 mm and a significant increase in scanning and reconstruction efficiency.展开更多
基金Project(2016YFB0503601) supported by the National Key Research and Development Program of China Project(41730105) supported by the National Natural Science Foundation of China
文摘Stochastic modeling techniques have been widely applied to oil-gas reservoir lithofacies. Markov chain simulation~ however~ is still under development~ mainly because of the difficulties in reasonably defining conditional probabilities for multi-dimensional Markov chains and determining transition probabilities for horizontal strike and dip directions. The aim of this work is to solve these problems. Firstly~ the calculation formulae of conditional probabilities for multi-dimensional Markov chain models are proposed under the full independence and conditional independence assumptions. It is noted that multi-dimensional Markov models based on the conditional independence assumption are reasonable because these models avoid the small-class underestimation problem. Then~ the methods for determining transition probabilities are given. The vertical transition probabilities are obtained by computing the transition frequencies from drilling data~ while the horizontal transition probabilities are estimated by using well data and the elongation ratios according to Walther's law. Finally~ these models are used to simulate the reservoir lithofacies distribution of Tahe oilfield in China. The results show that the conditional independence method performs better than the full independence counterpart in maintaining the true percentage composition and reproducing lithofacies spatial features.
基金supported by the National Basic Research Program of China (973 Program,Grant No.2013CB430105)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-EW-203)the National Natural Science Foundation of China (Grant No.41105095)
文摘The ice water content(IWC) distribution in a mixed-phase cloud system was investigated using Cloud-Sat data,aircraft measurements,and the Weather Research and Forecasting(WRF) model.Simulated precipitation and IWC were in general agreement with rain gauge,sat-ellite,and aircraft observations.The cloud case was char-acterized by a predominant cold layer and high IWC throughout the cloud-development and precipitation stages.The CloudSat-retrieved products suggested that the IWC was distributed from 4.0 to 8.0 km,with the maximum values(up to 0.5 g m-3) at 5.0-6.0 km at the earlymature stage of cloud development.High IWC(up to 0.8 g m-3) was also detected by airborne probes at 4.2 and 3.6 km at the late-mature stage.The WRF model simulation re-vealed that the predominant riming facilitated rapid ac-cumulation of high IWC at 3.0-6.0 km.
基金Supported by the Key R&D Projects in Shaanxi Province(2022JBGS3-08)。
文摘Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the three-dimensional(3D)surface reconstruction of coarse aggregate particles using occlusion-free multi-view imaging.The system captures synchronized images of particles in free fall,employing a matte sphere and a nonlinear optimization approach to estimate the camera projection matrices.A pre-trained segmentation model is utilized to eliminate the background of the images.The Shape from Silhouettes(SfS)algorithm is then applied to generate 3D voxel data,followed by the Marching Cubes algorithm to construct the 3D surface contour.Validation against standard parts and diverse coarse aggregate particles confirms the method's high accuracy,with an average measurement precision of 0.434 mm and a significant increase in scanning and reconstruction efficiency.