The effects of copper on the ageing precipitation behavior of as-quenched and pre-aged AA6016 aluminum alloy were studied by differential scanning calorimetry (DSC), Vickers hardness measurement and transmission ele...The effects of copper on the ageing precipitation behavior of as-quenched and pre-aged AA6016 aluminum alloy were studied by differential scanning calorimetry (DSC), Vickers hardness measurement and transmission electronic microscopy (TEM). The results indicate that the addition of copper facilitates the growth of clusters (GP I) to the critical size during pre-ageing. Therefore, the addition of copper accelerates the transition from GP I (pre-β") to GP II (β") during final artificial ageing, and finally results in the favorable paint-bake response. However, the one with the copper level of 0.3% does not show significant baking hardening response as expected. Pre-aging can also reduce the detrimental effect due to natural aging of copper-containing alloys.展开更多
The thorough-thickness inhomogeneity of precipitate distribution and pitting corrosion behavior of 95 mm-thick 2297 Al-Li alloy rolled plate was investigated using scanning electron microscopy, transmission electron m...The thorough-thickness inhomogeneity of precipitate distribution and pitting corrosion behavior of 95 mm-thick 2297 Al-Li alloy rolled plate was investigated using scanning electron microscopy, transmission electron microscopy and electrochemistry method. Precipitate distribution and pit size were statistically analyzed to obtain quantitative information and corresponding correlation. The population density and the size fraction of precipitate on different sections in the thick plate are ranked from high to low in the following order: quarter-section(QS) > surface section(SS) > mid-section(MS). After 300 min potentiostatic polarization, the number and the total volume of pits are ranked from high to low as QS>SS>MS, indicating a higher pitting susceptibility of the plate in QS with more precipitates. The through-thickness inhomogeneity of pitting corrosion in 2297 Al-Li alloy thick plate is mainly ascribed to inhomogeneous precipitate distribution.展开更多
A novel Cu?6.5Ni?1Al?1Si?0.15Mg?0.15Ce alloy with super-high strength was designed and its corrosion behavior in3.5%NaCl solution at25°C was investigated by the means of SEM observation,TEM observation and XPS an...A novel Cu?6.5Ni?1Al?1Si?0.15Mg?0.15Ce alloy with super-high strength was designed and its corrosion behavior in3.5%NaCl solution at25°C was investigated by the means of SEM observation,TEM observation and XPS analysis.The alloy after solution treatment,80%cold rolling and aging at450°C for1h had the best comprehensive properties with hardness of HV314,electrical conductivity of19.4%IACS,tensile strength of1017MPa,and average annual corrosion rate of0.028mm/a.The oxides and chloride products formed at first,followed by the formation of dyroxides products.The alloy showed super-high strength,good electrical conductivity and corrosion resistant because Ni2Si hindered the precipitation of large NiAl at the grain boundary and the denickelefication of the alloy.展开更多
High-angle annular dark-field scanning transmission electron microscopy and selected area electron diffraction techniques were used to study the mechanism that underlies the influence of rapid cold-stamping deformatio...High-angle annular dark-field scanning transmission electron microscopy and selected area electron diffraction techniques were used to study the mechanism that underlies the influence of rapid cold-stamping deformation on the fracture behavior of the elongated nanoprecipitated phase in extruded Al−Cu−Mg alloy.Results show that the interface between the long strip-shaped S′phase and the aluminum matrix in the extruded Al−Cu−Mg alloy is flat and breaks during rapid cold-stamping deformation.The breaking mechanisms are distortion and brittle failure,redissolution,and necking.The breakage of the long strip S′phase increases the contact surface between the S′phase and the aluminum matrix and improves the interfacial distortion energy.This effect accounts for the higher free energy of the S′phase than that of the matrix and creates conditions for the redissolution of solute atoms back into the aluminum matrix.The brittle S′phase produces a resolved step during rapid cold-stamping deformation.This step further accelerates the diffusion of solute atoms and promotes the redissolution of the S′phase.Thus,the S′phase necks and separates,and the long strip-shaped S′phase in the extruded Al−Cu−Mg alloy is broken into a short and thin S′phase.展开更多
A novel forging process of 6082 aluminum alloy is proposed, which can save time and reduce energy consumption while ensuring mechanical properties. In this process, the billet was preforged at solid solution temperatu...A novel forging process of 6082 aluminum alloy is proposed, which can save time and reduce energy consumption while ensuring mechanical properties. In this process, the billet was preforged at solid solution temperature and then preaged, followed by warm forging at 200 ℃. The flow behavior of the preaged samples during compression and the mechanical properties of the formed samples were investigated by hot compression tests. The differences in the precipitated phases of the samples with different processing parameters were analyzed by scanning electron microscopy(SEM), transmission electron microscopy(TEM), and differential scanning calorimetry(DSC). The best comprehensive performance was obtained after preaging at 120 ℃ for 4 h and holding at 200 ℃ for 10 min, and the Vickers hardness was HV 128, which was higher than that of the traditional process. Precipitation strengthening and dislocation strengthening were improved when the samples were formed at 200 ℃. This forging process shows the advantages of short time consumption and low energy consumption, which can effectively improve the production efficiency while ensuring the strength after forming.展开更多
Ti5553-xFe (x=0.4, 1.2, 2.0, wt.%) alloys have been designed and fabricated through BE (blended element) sintering to investigate the effect of Fe-addition on athermal ω-phase transformation, α-phase evolution and a...Ti5553-xFe (x=0.4, 1.2, 2.0, wt.%) alloys have been designed and fabricated through BE (blended element) sintering to investigate the effect of Fe-addition on athermal ω-phase transformation, α-phase evolution and age hardening behavior. The results show that the formation of athermal ω-phase is fully suppressed in water-quenched specimens when Fe-addition is up to 2 wt.%. The relevant timescales of α formation during initial stages of aging indicate that incubation time increases with Fe-addition. Further aging results in continuous nucleation and growth of α-phase but finer intragranular α lamellae exhibit in Ti5553-2Fe alloy. In addition, the width and extent of grain boundary α-film increase slightly with incremental Fe-addition, especially in furnace cooling condition. Result of Vickers hardness manifests that Fe-addition leads to a strong hardening effect in both solution and aging treatment. The solid solution strengthening is quantitatively estimated by ab initio calculation based on the Labusch?Nabarro model. The evolution of α-precipitate is rationalized by Gibbs free energy. The prominent hardening effect of Ti5553?2Fe alloy is attributed to both large lattice misfit of β-matrix and fine α-precipitate distribution.展开更多
The effect of Ti content on the microstructure and mechanical properties of as-cast light-weight Ti_(x)(AlVCr)_(100−x)medium entropy alloys was studied by compressive tests,X-ray diffraction,scanning electron microsco...The effect of Ti content on the microstructure and mechanical properties of as-cast light-weight Ti_(x)(AlVCr)_(100−x)medium entropy alloys was studied by compressive tests,X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The results suggest that yield strength increases and then decreases with the increment of Ti content.The Ti_(60)(AlVCr)_(40)alloy has the best combination of high strength of 1204 MPa and uniform plastic strain of 70%,possessing a high specific yield strength of 255 MPa·cm^(3)/g.The enhancement of strength is mainly attributed to the synergic effects of solid-solution and coherent nano-precipitation strengthening,while dislocation motion such as dislocation pinning,entanglement and dislocation cells significantly increases the strain-hardening capacity.展开更多
基金Project(51105139)supported by the National Natural Science Foundation of ChinaProject(2010CB731706)supported by the National Basic Research Program of China
文摘The effects of copper on the ageing precipitation behavior of as-quenched and pre-aged AA6016 aluminum alloy were studied by differential scanning calorimetry (DSC), Vickers hardness measurement and transmission electronic microscopy (TEM). The results indicate that the addition of copper facilitates the growth of clusters (GP I) to the critical size during pre-ageing. Therefore, the addition of copper accelerates the transition from GP I (pre-β") to GP II (β") during final artificial ageing, and finally results in the favorable paint-bake response. However, the one with the copper level of 0.3% does not show significant baking hardening response as expected. Pre-aging can also reduce the detrimental effect due to natural aging of copper-containing alloys.
基金Project(51671013)supported by the National Natural Science Foundation of ChinaProject(Z161100004916061)supported by the Beijing Nova Program,China
文摘The thorough-thickness inhomogeneity of precipitate distribution and pitting corrosion behavior of 95 mm-thick 2297 Al-Li alloy rolled plate was investigated using scanning electron microscopy, transmission electron microscopy and electrochemistry method. Precipitate distribution and pit size were statistically analyzed to obtain quantitative information and corresponding correlation. The population density and the size fraction of precipitate on different sections in the thick plate are ranked from high to low in the following order: quarter-section(QS) > surface section(SS) > mid-section(MS). After 300 min potentiostatic polarization, the number and the total volume of pits are ranked from high to low as QS>SS>MS, indicating a higher pitting susceptibility of the plate in QS with more precipitates. The through-thickness inhomogeneity of pitting corrosion in 2297 Al-Li alloy thick plate is mainly ascribed to inhomogeneous precipitate distribution.
基金Project(51271203)supported by the National Natural Science Foundation of China
文摘A novel Cu?6.5Ni?1Al?1Si?0.15Mg?0.15Ce alloy with super-high strength was designed and its corrosion behavior in3.5%NaCl solution at25°C was investigated by the means of SEM observation,TEM observation and XPS analysis.The alloy after solution treatment,80%cold rolling and aging at450°C for1h had the best comprehensive properties with hardness of HV314,electrical conductivity of19.4%IACS,tensile strength of1017MPa,and average annual corrosion rate of0.028mm/a.The oxides and chloride products formed at first,followed by the formation of dyroxides products.The alloy showed super-high strength,good electrical conductivity and corrosion resistant because Ni2Si hindered the precipitation of large NiAl at the grain boundary and the denickelefication of the alloy.
基金Project(19A131)supported by Key Scientific Research Project of Hunan Province,ChinaProject(2019JJ60050)supported by the Natural Science Foundation of Hunan Province,China。
文摘High-angle annular dark-field scanning transmission electron microscopy and selected area electron diffraction techniques were used to study the mechanism that underlies the influence of rapid cold-stamping deformation on the fracture behavior of the elongated nanoprecipitated phase in extruded Al−Cu−Mg alloy.Results show that the interface between the long strip-shaped S′phase and the aluminum matrix in the extruded Al−Cu−Mg alloy is flat and breaks during rapid cold-stamping deformation.The breaking mechanisms are distortion and brittle failure,redissolution,and necking.The breakage of the long strip S′phase increases the contact surface between the S′phase and the aluminum matrix and improves the interfacial distortion energy.This effect accounts for the higher free energy of the S′phase than that of the matrix and creates conditions for the redissolution of solute atoms back into the aluminum matrix.The brittle S′phase produces a resolved step during rapid cold-stamping deformation.This step further accelerates the diffusion of solute atoms and promotes the redissolution of the S′phase.Thus,the S′phase necks and separates,and the long strip-shaped S′phase in the extruded Al−Cu−Mg alloy is broken into a short and thin S′phase.
基金financially supported by the National Natural Science Foundation of China (Nos. 51775397, 52075400)“111” Project of China (No. B17034)+1 种基金the Major Program of Science and Technology Program of Hubei Province, China (Nos. 2019AAA007, 2020BAB140)the Innovative Research Team Development Program of Ministry of Education of China (No. IRT17R83)。
文摘A novel forging process of 6082 aluminum alloy is proposed, which can save time and reduce energy consumption while ensuring mechanical properties. In this process, the billet was preforged at solid solution temperature and then preaged, followed by warm forging at 200 ℃. The flow behavior of the preaged samples during compression and the mechanical properties of the formed samples were investigated by hot compression tests. The differences in the precipitated phases of the samples with different processing parameters were analyzed by scanning electron microscopy(SEM), transmission electron microscopy(TEM), and differential scanning calorimetry(DSC). The best comprehensive performance was obtained after preaging at 120 ℃ for 4 h and holding at 200 ℃ for 10 min, and the Vickers hardness was HV 128, which was higher than that of the traditional process. Precipitation strengthening and dislocation strengthening were improved when the samples were formed at 200 ℃. This forging process shows the advantages of short time consumption and low energy consumption, which can effectively improve the production efficiency while ensuring the strength after forming.
基金Projects(51671158,51871176,51621063)supported by the National Natural Science Foundation of ChinaProject(2014CB644003)supported by the National Basic Research Program of China+1 种基金Project(PB2018008)supported by the 111 Project 2.0,ChinaProject(2018JM5098)supported by the Natural Science Basic Research Plan in Shaanxi Province of China
文摘Ti5553-xFe (x=0.4, 1.2, 2.0, wt.%) alloys have been designed and fabricated through BE (blended element) sintering to investigate the effect of Fe-addition on athermal ω-phase transformation, α-phase evolution and age hardening behavior. The results show that the formation of athermal ω-phase is fully suppressed in water-quenched specimens when Fe-addition is up to 2 wt.%. The relevant timescales of α formation during initial stages of aging indicate that incubation time increases with Fe-addition. Further aging results in continuous nucleation and growth of α-phase but finer intragranular α lamellae exhibit in Ti5553-2Fe alloy. In addition, the width and extent of grain boundary α-film increase slightly with incremental Fe-addition, especially in furnace cooling condition. Result of Vickers hardness manifests that Fe-addition leads to a strong hardening effect in both solution and aging treatment. The solid solution strengthening is quantitatively estimated by ab initio calculation based on the Labusch?Nabarro model. The evolution of α-precipitate is rationalized by Gibbs free energy. The prominent hardening effect of Ti5553?2Fe alloy is attributed to both large lattice misfit of β-matrix and fine α-precipitate distribution.
基金supported by the National Natural Science Foundation of China(Nos.52071176,12072331,51771090,51671103)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,China.
文摘The effect of Ti content on the microstructure and mechanical properties of as-cast light-weight Ti_(x)(AlVCr)_(100−x)medium entropy alloys was studied by compressive tests,X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The results suggest that yield strength increases and then decreases with the increment of Ti content.The Ti_(60)(AlVCr)_(40)alloy has the best combination of high strength of 1204 MPa and uniform plastic strain of 70%,possessing a high specific yield strength of 255 MPa·cm^(3)/g.The enhancement of strength is mainly attributed to the synergic effects of solid-solution and coherent nano-precipitation strengthening,while dislocation motion such as dislocation pinning,entanglement and dislocation cells significantly increases the strain-hardening capacity.