期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
七量子位D-J算法和精确受控相移门的NMR实验实现 被引量:1
1
作者 魏达秀 罗军 +4 位作者 孙献平 曾锡之 杨晓冬 刘买利 丁尚武 《科学通报》 EI CAS CSCD 北大核心 2003年第2期120-124,共5页
首次报道通过液相核磁共振(NMR)实验实现七量子位D.J(Deutsch-Jozsa)量子算法和精确受控相移门的实验研究结果.实验表明:使用不同脉冲序列实现了七量子位D-J算法中的Uf变换,只对Uf变换进行一次评估就可以判断所执行的变换中函数f的性质... 首次报道通过液相核磁共振(NMR)实验实现七量子位D.J(Deutsch-Jozsa)量子算法和精确受控相移门的实验研究结果.实验表明:使用不同脉冲序列实现了七量子位D-J算法中的Uf变换,只对Uf变换进行一次评估就可以判断所执行的变换中函数f的性质.此外,提出了实验上简单可行、设计精确、任意相移的受控相移门的实验方法.所得结果将有助于解决多量子位NMR信号的灵敏度变差问题,由于他用大量选择性脉冲序列而增加的实验复杂性问题和由于选择性脉冲的不完善使得实现逻辑门的误差增加的问题.并且,可以应用于多量子位和更复杂的算法(例如量子Fourier变换和Shor算法). 展开更多
关键词 七量子位D-J算法 精确受控相移门 液相核磁共振实验 NMR Uf变换 量子计算机 量子Fourier变换 Shor算法
原文传递
煤矿旋转机电设备的量子神经网络故障诊断技术 被引量:6
2
作者 张永强 马宪民 徐美惠 《工矿自动化》 北大核心 2015年第4期64-68,共5页
针对煤矿旋转机电设备故障模式相互干扰的问题,基于量子神经网络理论,提出了一种量子神经网络故障诊断算法。以量子学中的相移门和受控非门为基本计算单元,构造出3层量子神经网络故障诊断模型,采用梯度下降法作为该模型的学习算法,对刮... 针对煤矿旋转机电设备故障模式相互干扰的问题,基于量子神经网络理论,提出了一种量子神经网络故障诊断算法。以量子学中的相移门和受控非门为基本计算单元,构造出3层量子神经网络故障诊断模型,采用梯度下降法作为该模型的学习算法,对刮板输送机减速器的多种故障进行识别诊断。初步研究结果表明,所提出的量子神经网络故障诊断技术是可行的,有助于提高煤矿旋转机电设备的故障诊断率。 展开更多
关键词 煤矿旋转机电设备 故障诊断 量子神经网络 刮板输送机 减速器 相移门
下载PDF
基于腔输入-输出过程的原子Bell态分析器和GHZ态分析器
3
作者 李艾莉 於亚飞 张智明(指导) 《量子电子学报》 CAS CSCD 北大核心 2014年第1期69-74,共6页
如何能够不破坏纠缠态且能将其辨认区分出来是量子信息处理过程中一个很重要的问题。方案首先利用相干光与腔-原子系统的输入-输出过程构造受控相移门,然后利用受控相移门和零差探测技术构造宇称分析器,最后利用宇称分析器和Hadamaxd等... 如何能够不破坏纠缠态且能将其辨认区分出来是量子信息处理过程中一个很重要的问题。方案首先利用相干光与腔-原子系统的输入-输出过程构造受控相移门,然后利用受控相移门和零差探测技术构造宇称分析器,最后利用宇称分析器和Hadamaxd等操作构造非破坏性的原子Bell态分析器和原子GHZ态分析器。方案的优势在于,1)利用相干光源和零差探测技术,比以往方案中的单光子源和单光子探测易实现;2)构造的原子Bell态分析器和原子GHZ态分析器是非破坏性的、方案用到的所有方法和技术目前在实验上都是可以实现的、 展开更多
关键词 量子光学 Bell态分析器 GHZ态分析器 腔输入一输出过程 受控相移门
下载PDF
Migration-associated secretion of melanoma inhibitory activity at the cell rear is supported by KCa3.1 potassium channels 被引量:3
4
作者 Jennifer Schmidt Kristin Friebel +2 位作者 Roland Schoenherr Marc G Coppolino Anja-Katrin Bosserhoff 《Cell Research》 SCIE CAS CSCD 2010年第11期1224-1238,共15页
Malignant melanoma, characterized by invasive local growth and early formation of metastases, is the most aggressive type of skin cancer. Melanoma inhibitory activity (MIA), secreted by malignant melanoma cells, int... Malignant melanoma, characterized by invasive local growth and early formation of metastases, is the most aggressive type of skin cancer. Melanoma inhibitory activity (MIA), secreted by malignant melanoma cells, interacts with the cell adhesion receptors, integrins a4131 and 05131, facilitating cell detachment and promoting formation of me- tastases. In the present study, we demonstrate that MIA secretion is confined to the rear end of migrating cells, while in non-migrating cells MIA accumulates in the actin cortex. MIA protein takes a conventional secretory pathway including coat protein complex I (COPI)- and coat protein complex II (COPII)-dependent protein transport to the cell periphery, where its final release depends on intracellular Ca2+ ions. Interestingly, the Ca2+-activated K+-channel, subfamily N, member 4 (KCa3.1), known to be active at the rear end of migrating cells, was found to support MIA secretion. Secretion was diminished by the specific KCa3.1 channel inhibitor TRAM-34 and by expression of dominant- negative mutants of the channel. In summary, we have elucidated the migration-associated transport of MIA protein to the cell rear and also disclosed a new mechanism by which KCa3.1 potassium channels promote cell migration. 展开更多
关键词 MIA protein KCa3.1 potassium channel MIGRATION directed transport regulated secretion
下载PDF
Unconventional Geometric Phase-Shift Gates Based on Superconducting Quantum Interference Devices Coupled to a Single-Mode Cavity
5
作者 SONG Ke-Hui ZHOU Zheng-Wei GUO Guang-Can 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第4X期631-634,共4页
We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is perf... We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed in two lower flux states, and the excited state [2〉 would not participate in the procedure. The SQUIDs undergo no transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum iogic in SQUID-system. 展开更多
关键词 geometric phase-shift gate superconducting quantum interference device CAVITY-QED
下载PDF
Geometric Phase Gate Based on Both Displacement Operator and Squeezed Operators with a Superconducting Circuit Quantum Electrdynamics
6
作者 陈昌永 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第7期91-95,共5页
We give the brief review on the related definition of the geometric phase independent of specific physical system based on the displacement opreator and the sqeezed operator, then show how the displacement operator an... We give the brief review on the related definition of the geometric phase independent of specific physical system based on the displacement opreator and the sqeezed operator, then show how the displacement operator and the squeezed operator can induce the general geometric phase. By means of the displacement operator and the squeezed operator concerning the circuit cavity mode state along a closed path in the phase space, we discuss specifically how to implement a two-qubit geometric phase gate in circuit quantum electrodynamics with both single photon interaction and two-photon interaction between the superconducting qubits and the circuit cavity modes. The experimental feasibility is discussed in detail. 展开更多
关键词 geometric gate circuit quantum electrodynamics sequeezed operator
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部