The quantum Fourier transform and quantum phase estimation are the key components for many quantum algorithms, such as order-finding, factoring, and etc. In this article, the general procedure of quantum Fourier trans...The quantum Fourier transform and quantum phase estimation are the key components for many quantum algorithms, such as order-finding, factoring, and etc. In this article, the general procedure of quantum Fourier transform and phase estimation are investigated for high dimensional case run in a qudit quantum computer, and the quantum circuits are They can be seen as subroutines in a main program given.展开更多
The phase difference method (PDM) is presented for the direction of arrival (DOA) estimation of the narrowband source. It estimates the DOA by measuring the reciprocal of the phase range of the sensor output spectra a...The phase difference method (PDM) is presented for the direction of arrival (DOA) estimation of the narrowband source. It estimates the DOA by measuring the reciprocal of the phase range of the sensor output spectra at the interest frequency bin. The peak width and variance of the PDM are presented. The PDM can distinguish closely spaced sources with different and unknown center frequencies as long as they are separated with at least one frequency bin. The simulation results show that the PDM has a better resolution than that of the conventional beamforming.展开更多
In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced ap...In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.展开更多
Under dynamic conditions, the signals of power system have time-varying magnitude and frequency, which might lead to considerable errors for synchrophasor measurement. The traditional discrete Fourier transform (DFT) ...Under dynamic conditions, the signals of power system have time-varying magnitude and frequency, which might lead to considerable errors for synchrophasor measurement. The traditional discrete Fourier transform (DFT) based algorithms used in Phasor Measurement Unit (PMU) are hard to meet the requirements of measurement accuracy because of the existence of spectral leakage. A dynamic phasor measurement algorithm is proposed in this paper in which the input sampled data are considered as non-stationary signals with amplitude modulation-frequency modulation (AM-FM) form, and the measurement is achieved by AM-FM demodulation. An angle-shifted energy operator (ASEO) is used to extract the instantaneous amplitude and low pass differential filter is introduced for frequency estimation. Simulation results indicate that the proposed algorithm can effectively improve the phasor measurement accuracy and has very short response time for PMU under dynamic conditions.展开更多
基金Supported by the National Natural Science Foundation of China Grant No.10874098the National Basic Research Program of China under Grant Nos.2009CB929402 and 2011CB9216002
文摘The quantum Fourier transform and quantum phase estimation are the key components for many quantum algorithms, such as order-finding, factoring, and etc. In this article, the general procedure of quantum Fourier transform and phase estimation are investigated for high dimensional case run in a qudit quantum computer, and the quantum circuits are They can be seen as subroutines in a main program given.
基金the National Science Foundation under Grant No. 60672136the the Doctorate Foundation of Northwestern Polytechnical University under Grant No.CX200803
文摘The phase difference method (PDM) is presented for the direction of arrival (DOA) estimation of the narrowband source. It estimates the DOA by measuring the reciprocal of the phase range of the sensor output spectra at the interest frequency bin. The peak width and variance of the PDM are presented. The PDM can distinguish closely spaced sources with different and unknown center frequencies as long as they are separated with at least one frequency bin. The simulation results show that the PDM has a better resolution than that of the conventional beamforming.
文摘In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20090002110040)
文摘Under dynamic conditions, the signals of power system have time-varying magnitude and frequency, which might lead to considerable errors for synchrophasor measurement. The traditional discrete Fourier transform (DFT) based algorithms used in Phasor Measurement Unit (PMU) are hard to meet the requirements of measurement accuracy because of the existence of spectral leakage. A dynamic phasor measurement algorithm is proposed in this paper in which the input sampled data are considered as non-stationary signals with amplitude modulation-frequency modulation (AM-FM) form, and the measurement is achieved by AM-FM demodulation. An angle-shifted energy operator (ASEO) is used to extract the instantaneous amplitude and low pass differential filter is introduced for frequency estimation. Simulation results indicate that the proposed algorithm can effectively improve the phasor measurement accuracy and has very short response time for PMU under dynamic conditions.