Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shie...Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shield tunnel structure test system". And the mechanical characteristics of segmental lining structure using straight assembling and staggered assembling were studied deeply. The results showed that, the mechanical characteristics of segmental lining structure varied with the water pressures; especially after cracking, the high water pressure played a significant role in slowing down the growing inner force and deformation. It also testi- fied that the failure characteristics varied with straight assembling structure and staggered assembling structure. Shear thilurc often occurred near longitudinal seam when using straight assembling.展开更多
A mathematical model of the soil pressure system in shield tunneling was proposed to optimize soil pressure control in the soil chamber, based on the constitutive relationship between strain and stress. The desired pr...A mathematical model of the soil pressure system in shield tunneling was proposed to optimize soil pressure control in the soil chamber, based on the constitutive relationship between strain and stress. The desired pressure is determined by using the finite element method. A linear quadratic constant state tracking problem was considered over an infinite time interval. The optimal control law was derived by differentiating the Hamilton function with respect to system input. In order to verify the effectiveness of the proposed mathematical model and optimal control law, an experimental study on the pressure control of the soil chamber in shield tunneling was conducted in a laboratory. The experiment results show that soil pressure in the soil chamber in shield tunneling can be accurately controlled.展开更多
基金Joint Funds of National Natural Science Foundation of China(No.U1134208)National Key Basic Research Program of China(No.2010CB732105)National Natural Science Foundation of China(No.50925830,No.51208432)
文摘Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shield tunnel structure test system". And the mechanical characteristics of segmental lining structure using straight assembling and staggered assembling were studied deeply. The results showed that, the mechanical characteristics of segmental lining structure varied with the water pressures; especially after cracking, the high water pressure played a significant role in slowing down the growing inner force and deformation. It also testi- fied that the failure characteristics varied with straight assembling structure and staggered assembling structure. Shear thilurc often occurred near longitudinal seam when using straight assembling.
基金Supported by the National Basic Research Project (2007CB714006, 90815023) the National Natural Science Foundation of China (GZ0818, GZ1107)
文摘A mathematical model of the soil pressure system in shield tunneling was proposed to optimize soil pressure control in the soil chamber, based on the constitutive relationship between strain and stress. The desired pressure is determined by using the finite element method. A linear quadratic constant state tracking problem was considered over an infinite time interval. The optimal control law was derived by differentiating the Hamilton function with respect to system input. In order to verify the effectiveness of the proposed mathematical model and optimal control law, an experimental study on the pressure control of the soil chamber in shield tunneling was conducted in a laboratory. The experiment results show that soil pressure in the soil chamber in shield tunneling can be accurately controlled.