The Sichuan Basin, located in the western margin of Yangtze Plate, is one of the important oil-gas-bearing basins in China. During the Early Permian-Middle Triassic, the Sichuan Basin experienced regional lithospheric...The Sichuan Basin, located in the western margin of Yangtze Plate, is one of the important oil-gas-bearing basins in China. During the Early Permian-Middle Triassic, the Sichuan Basin experienced regional lithospheric extension and Emeishan basalt activities, both of which influenced the basin development and thermal evolution. Here we simulated the thermal effects of lithospheric extension and the Emeishan mantle plume based on different geodynamical models. Modeling results indicated that the lithospheric temperature together with the basement heat flow was generally increasing with time due to extension. As the stretching factor was relatively small, the thinning of lithosphere, and consequently the thermal disturbance, was not great. The lithospheric extension yielded about 20% increase of the basement heat flow, with maximum value of 60?62 mW m?2 in the Early Triassic. Mantle plume model shows that the thermal evolution of the inner zone above the plume head was influenced greatly by plume activity. But the outer zone and its outside area where the Sichuan Basin is located were affected only slightly. The basalts that had erupted in the southwestern basin might disturb the basin temperature significantly, although shortly and locally. Generally, the thermal history of the Sichuan basin during the Early Permian-Middle Triassic was controlled by the lithospheric extension, but locally it superimposed thermal effects of basalt activities in its southwestern area.展开更多
This paper reports an integrated study of in sire U-Pb geochronology and elemental geochemistry of zircons from the Xianglushan iron-polymetallic deposit in western Guizhou Province, Southwest China. Genetic relations...This paper reports an integrated study of in sire U-Pb geochronology and elemental geochemistry of zircons from the Xianglushan iron-polymetallic deposit in western Guizhou Province, Southwest China. Genetic relationship between this new type of deposit and unroofing of the Emeishan large igneous province (ELIP) is focused. Along with the zoning pattern in spatial distribution of diverse weathering-related deposits along the southern and southeastern margins of the ELIP, it is suggested that the genesis of the iron-polymetallic deposit was specialized by factors of coastal paleogeography in hot-humid climate, where iron-enriched laterites formed, and repetitive marine transgression-regression occurred during the Late Permian.展开更多
基金supported by Sinopec Marine Forward-looking Projects (Grant No. YPH08101)
文摘The Sichuan Basin, located in the western margin of Yangtze Plate, is one of the important oil-gas-bearing basins in China. During the Early Permian-Middle Triassic, the Sichuan Basin experienced regional lithospheric extension and Emeishan basalt activities, both of which influenced the basin development and thermal evolution. Here we simulated the thermal effects of lithospheric extension and the Emeishan mantle plume based on different geodynamical models. Modeling results indicated that the lithospheric temperature together with the basement heat flow was generally increasing with time due to extension. As the stretching factor was relatively small, the thinning of lithosphere, and consequently the thermal disturbance, was not great. The lithospheric extension yielded about 20% increase of the basement heat flow, with maximum value of 60?62 mW m?2 in the Early Triassic. Mantle plume model shows that the thermal evolution of the inner zone above the plume head was influenced greatly by plume activity. But the outer zone and its outside area where the Sichuan Basin is located were affected only slightly. The basalts that had erupted in the southwestern basin might disturb the basin temperature significantly, although shortly and locally. Generally, the thermal history of the Sichuan basin during the Early Permian-Middle Triassic was controlled by the lithospheric extension, but locally it superimposed thermal effects of basalt activities in its southwestern area.
基金supported by the National Natural Science Foundation of China(Grant Nos.41373037 and 41173048)Integrated Exploration Project of the Weining-Shuicheng Iron-Polymetallic Deposits,Guizhou Province
文摘This paper reports an integrated study of in sire U-Pb geochronology and elemental geochemistry of zircons from the Xianglushan iron-polymetallic deposit in western Guizhou Province, Southwest China. Genetic relationship between this new type of deposit and unroofing of the Emeishan large igneous province (ELIP) is focused. Along with the zoning pattern in spatial distribution of diverse weathering-related deposits along the southern and southeastern margins of the ELIP, it is suggested that the genesis of the iron-polymetallic deposit was specialized by factors of coastal paleogeography in hot-humid climate, where iron-enriched laterites formed, and repetitive marine transgression-regression occurred during the Late Permian.