In order to improve the cutting stiffness,the paper studies the vertical hydrostatic bearing in the slide when a ram is in feed process.The change of the oil film thickness on hydrostatic guide rail and the curve of t...In order to improve the cutting stiffness,the paper studies the vertical hydrostatic bearing in the slide when a ram is in feed process.The change of the oil film thickness on hydrostatic guide rail and the curve of the oil film thickness in various cutting forces are calculated and a relation model through theoretical analysis method is derived.The pressure field of the guide rail recess is simulated based on the finite volume method and demonstrated through experiments.The study is of vital theoretical significance for the improvement of machining accuracy of numerical control machines and the entire computer numerical control(CNC) equipment and provides valuable theoretical basis for the design of hydrostatic guide rail in engineering practice.展开更多
A new method is developed to assess and analyze the dynamic performance of hydrostatic bearing oil film by using an amulets-layer dynamic mesh technique. It is implemented using C Language to compile the UDF program o...A new method is developed to assess and analyze the dynamic performance of hydrostatic bearing oil film by using an amulets-layer dynamic mesh technique. It is implemented using C Language to compile the UDF program of a single oil film of the hydrostatic bearing. The effects of key lubrication parameters of the hydrostatic bearing are evaluated and analyzed under various working conditions,i.e. under no-load,a load of 40 t,a full load of 160 t,and the rotation speed of 1r/min,2r/min,4r/min,8r/min,16r/min,32r/min. The transient data of oil film bearing capacity under different load and rotation speed are acquired for a total of 18 working conditions during the oil film thickness changing. It allows the effective prediction of dynamic performance of large size hydrostatic bearing. Experiments on hydrostatic bearing oil film have been performed and the results were used to define the boundary conditions for the numerical simulations and validate the developed numerical model. The results showed that the oil film thickness became thinner with the increase of the operating time of the hydrostatic bearing,both the oil film rigidity and the oil cavity pressure increased significantly,and the increase of the bearing capacity was inversely proportional to the cube of the change of the film thickness. Meanwhile,the effect of the load condition on carrying capacity of large size static bearing was more important than the speed condition. The error between the simulation value and the experimental value was 4.25%.展开更多
基金Supported by the National Natural Science Funds for Young Scholar of China(No.51005063)the Science and Technology Innovation People of Harbin(No.2013RFQXJ086)+1 种基金Heilongjiang Postdoctoral Foundation(No.LBH-Q12062)the National Natural Science Foundation of China(No.51075106)
文摘In order to improve the cutting stiffness,the paper studies the vertical hydrostatic bearing in the slide when a ram is in feed process.The change of the oil film thickness on hydrostatic guide rail and the curve of the oil film thickness in various cutting forces are calculated and a relation model through theoretical analysis method is derived.The pressure field of the guide rail recess is simulated based on the finite volume method and demonstrated through experiments.The study is of vital theoretical significance for the improvement of machining accuracy of numerical control machines and the entire computer numerical control(CNC) equipment and provides valuable theoretical basis for the design of hydrostatic guide rail in engineering practice.
基金Supported by the National Natural Science Foundation of China(No.51005063,51375123)National Science and Technology Cooperation Projects of China(No.2012DFR70840)
文摘A new method is developed to assess and analyze the dynamic performance of hydrostatic bearing oil film by using an amulets-layer dynamic mesh technique. It is implemented using C Language to compile the UDF program of a single oil film of the hydrostatic bearing. The effects of key lubrication parameters of the hydrostatic bearing are evaluated and analyzed under various working conditions,i.e. under no-load,a load of 40 t,a full load of 160 t,and the rotation speed of 1r/min,2r/min,4r/min,8r/min,16r/min,32r/min. The transient data of oil film bearing capacity under different load and rotation speed are acquired for a total of 18 working conditions during the oil film thickness changing. It allows the effective prediction of dynamic performance of large size hydrostatic bearing. Experiments on hydrostatic bearing oil film have been performed and the results were used to define the boundary conditions for the numerical simulations and validate the developed numerical model. The results showed that the oil film thickness became thinner with the increase of the operating time of the hydrostatic bearing,both the oil film rigidity and the oil cavity pressure increased significantly,and the increase of the bearing capacity was inversely proportional to the cube of the change of the film thickness. Meanwhile,the effect of the load condition on carrying capacity of large size static bearing was more important than the speed condition. The error between the simulation value and the experimental value was 4.25%.