Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using paramet...Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using parameterization schemes that distribute brine rejection directly in the upper ocean mixed layer.In this study,idealized ocean model experiments were conducted to examine modeled ocean mixing errors as a function of the lead fraction in a climate model grid.When the lead is resolved by the grid,the added salt at the sea surface will sink to the base of the mixed layer and then spread horizontally.When averaged at a climate-model grid size,this vertical distribution of added salt is lead-fraction dependent.When the lead is unresolved,the model errors were systematic leading to greater surface salinity and deeper mixed-layer depth(MLD).An empirical function was developed to revise the added-salt-related parameter n from being fixed to lead-fraction dependent.Application of this new scheme in a climate model showed significant improvement in modeled wintertime salinity and MLD as compared to series of CTD data sets in 1997/1998 and 2006/2007.The results showed the most evident improvement in modeled MLD in the Arctic Basin,similar to that using a fixed n=5,as recommended by the previous Arctic regional model study,in which the parameter n obtained is close to 5 due to the small lead fraction in the Arctic Basin in winter.展开更多
The characteristics of arbuscular mycorrhizal fungal (AMF) community structure in various soil depths and growing seasons of watermelon (Citrullus vulgaris) grown in commercial greenhouses in Daxing of Beijing and Wei...The characteristics of arbuscular mycorrhizal fungal (AMF) community structure in various soil depths and growing seasons of watermelon (Citrullus vulgaris) grown in commercial greenhouses in Daxing of Beijing and Weifang and Laiyang of Shandong, China were investigated using both morphological identification and denaturing gradient gel electrophoresis. The sampled soils had been used for continuous greenhouse production of watermelon for 0, 5, 10, 15, or 20 years. Glomus claroideum was the dominant species in the greenhouse soils planted for 5, 10, and 15 years in Laiyang, while Glomus mosseae and Glomus etunicatum were dominant in the nearby open farmland soil. Sorenson's similarity index of AMF community composition ranged from 0.67 to 0.84 in the soils planted for 5 years, and from 0.29 to 0.33 for 20 years among the three locations. Spore abundance, species richness, and the Shannon index were highest near the soil surface (0-10 cm) and decreased with soil depth, and higher in June and October than in August and December. Canonical correspondence analysis showed that available P and the number of years that soil had been used for greenhouse production were the main factors contributing to the variance of AMF community composition. It was concluded that the community structure of AMF was mainly influenced by soil available P and planting time of watermelon as well as by soil depth and seasonal variation in the commercial greenhouse.展开更多
Aims Alpine forest gaps can control understory ecosystem processes by manipulating hydrothermal dynamics.Here,we aimed to test the role of alpine forest gap disturbance on total phenol loss(TPL)from the decomposing li...Aims Alpine forest gaps can control understory ecosystem processes by manipulating hydrothermal dynamics.Here,we aimed to test the role of alpine forest gap disturbance on total phenol loss(TPL)from the decomposing litter of two typical shrub species(willow,Salix paraplesia Schneid.,and bamboo,Fargesia nitida(Mitford)Keng f.).Methods We conducted a field litterbag experiment within a representative fir(Abies faxoniana Rehd.)forest based on‘gap openness treatments’(plot positions in the gap included the gap center south,gap center north,canopy edge,expanded edge and closed canopy).The TPL rate and litter surface microbial abundance(fungi and bacteria)of the two shrub species were measured during the following periods over 2 years:snow formation(SF),snow cover(SC),snow melting(ST),the early growing season(EG)and the late growing season(LG).Important Findings At the end of the study,we found that snow cover depth,freeze–thaw cycle frequency and the fungal copies g−1 to bacterial copies g−1 ratio had significant effects on litter TPL.The abundances of fungi and bacteria decreased from the gap center to the closed canopy during the SF,SC,ST and LG periods and showed the opposite trend during the EG periods.The rate of TPL among plot positions closely followed the same trend as microbial abundance during the first year of incubation.In addition,both species had higher rates of TPL in the gap center than at other positions during the first winter,first year and entire 2-year period.These findings suggest that alpine forest gap formation accelerates litter TPL,although litter TPL exhibits dual responses to gap disturbance during specific critical periods.In conclusion,reduced snow cover depth and duration during winter warming under projected climate change scenarios or as gaps vanish may slow litter TPL in alpine biomes.展开更多
基金funded by the University of Alaska Fairbanksthe International Arctic Research Center under NSF Climate Process Team (CPT) projects ARC-0968676 and ARC-0652838+3 种基金funded through grants to the International Arctic Research CenterUniversity of Alaska Fairbanksfrom the Japan Agency for Marine-Earth Science and Technology (JAMSTEC)as part of JAMSTEC and IARC Collaboration Studies(JICS)
文摘Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using parameterization schemes that distribute brine rejection directly in the upper ocean mixed layer.In this study,idealized ocean model experiments were conducted to examine modeled ocean mixing errors as a function of the lead fraction in a climate model grid.When the lead is resolved by the grid,the added salt at the sea surface will sink to the base of the mixed layer and then spread horizontally.When averaged at a climate-model grid size,this vertical distribution of added salt is lead-fraction dependent.When the lead is unresolved,the model errors were systematic leading to greater surface salinity and deeper mixed-layer depth(MLD).An empirical function was developed to revise the added-salt-related parameter n from being fixed to lead-fraction dependent.Application of this new scheme in a climate model showed significant improvement in modeled wintertime salinity and MLD as compared to series of CTD data sets in 1997/1998 and 2006/2007.The results showed the most evident improvement in modeled MLD in the Arctic Basin,similar to that using a fixed n=5,as recommended by the previous Arctic regional model study,in which the parameter n obtained is close to 5 due to the small lead fraction in the Arctic Basin in winter.
基金Supported by the National Natural Science Foundation of China (No. 30871737)the Open Fund of State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (No. Y052010038)the Qingdao Municipal Natural Science Foundation of China (No. 08-1-3-20-jch)
文摘The characteristics of arbuscular mycorrhizal fungal (AMF) community structure in various soil depths and growing seasons of watermelon (Citrullus vulgaris) grown in commercial greenhouses in Daxing of Beijing and Weifang and Laiyang of Shandong, China were investigated using both morphological identification and denaturing gradient gel electrophoresis. The sampled soils had been used for continuous greenhouse production of watermelon for 0, 5, 10, 15, or 20 years. Glomus claroideum was the dominant species in the greenhouse soils planted for 5, 10, and 15 years in Laiyang, while Glomus mosseae and Glomus etunicatum were dominant in the nearby open farmland soil. Sorenson's similarity index of AMF community composition ranged from 0.67 to 0.84 in the soils planted for 5 years, and from 0.29 to 0.33 for 20 years among the three locations. Spore abundance, species richness, and the Shannon index were highest near the soil surface (0-10 cm) and decreased with soil depth, and higher in June and October than in August and December. Canonical correspondence analysis showed that available P and the number of years that soil had been used for greenhouse production were the main factors contributing to the variance of AMF community composition. It was concluded that the community structure of AMF was mainly influenced by soil available P and planting time of watermelon as well as by soil depth and seasonal variation in the commercial greenhouse.
基金supported by the National Natural Science Foundation of China(no.31570445 and 31800518).
文摘Aims Alpine forest gaps can control understory ecosystem processes by manipulating hydrothermal dynamics.Here,we aimed to test the role of alpine forest gap disturbance on total phenol loss(TPL)from the decomposing litter of two typical shrub species(willow,Salix paraplesia Schneid.,and bamboo,Fargesia nitida(Mitford)Keng f.).Methods We conducted a field litterbag experiment within a representative fir(Abies faxoniana Rehd.)forest based on‘gap openness treatments’(plot positions in the gap included the gap center south,gap center north,canopy edge,expanded edge and closed canopy).The TPL rate and litter surface microbial abundance(fungi and bacteria)of the two shrub species were measured during the following periods over 2 years:snow formation(SF),snow cover(SC),snow melting(ST),the early growing season(EG)and the late growing season(LG).Important Findings At the end of the study,we found that snow cover depth,freeze–thaw cycle frequency and the fungal copies g−1 to bacterial copies g−1 ratio had significant effects on litter TPL.The abundances of fungi and bacteria decreased from the gap center to the closed canopy during the SF,SC,ST and LG periods and showed the opposite trend during the EG periods.The rate of TPL among plot positions closely followed the same trend as microbial abundance during the first year of incubation.In addition,both species had higher rates of TPL in the gap center than at other positions during the first winter,first year and entire 2-year period.These findings suggest that alpine forest gap formation accelerates litter TPL,although litter TPL exhibits dual responses to gap disturbance during specific critical periods.In conclusion,reduced snow cover depth and duration during winter warming under projected climate change scenarios or as gaps vanish may slow litter TPL in alpine biomes.