As a core technology of Intemet of Things (loT), Wireless Sensor Network (WSN) has become a research hotspot recently. More and more WSNs are being deployed in highly mobile environments. The fast moving sensor no...As a core technology of Intemet of Things (loT), Wireless Sensor Network (WSN) has become a research hotspot recently. More and more WSNs are being deployed in highly mobile environments. The fast moving sensor nodes bring significant challenges for the routing decision. In this paper, we propose an efficient logical location method, and designe a mobility estimating metric and derive a novel Green Mobility Estirmtion- based Routing protocol (G-MER) for WSNs. We also set up a full framework to evaluate its per- formance. Simulation results illustrate that G-MER achieves a fairly better perforrmnce in terrm of broadcast times and link failures than AODV. What's more, it decreases the mean hops by about 0.25 and reduces energy consumption by about 10% during the whole experiment. All the results show that G-MER can be effectively used in fast- moving and limited resource scenarios.展开更多
In this paper,an improved Susceptible-Infected-Susceptible(SIS) epidemic spreading model is proposed in order to provide a theoretical method to analyze and predict the spreading of diseases.This model is based on the...In this paper,an improved Susceptible-Infected-Susceptible(SIS) epidemic spreading model is proposed in order to provide a theoretical method to analyze and predict the spreading of diseases.This model is based on the following ideas:in social networks,the contact probability between nodes is decided by their social distances and their active degrees.The contact probability of two indirectly connected nodes is decided by the shortest path between them.Theoretical analysis and simulation experiment were conducted to evaluate the performance of this improved model.Because the proposed model is independent of the network structure,simulation experiments were done in several kinds of networks,namely the ER network,the random regular network,the WS small world network,and the BA scale-free network,in order to study the influences of certain factors have on the epidemic spreading,such as the social contact active degree,the network structure,the average degree,etc.This improved model provides an idea for studying the spreading rule of computer virus,attitudes,fashion styles and public opinions in social networks.展开更多
基金This paper was partially supported by the National Natural Science Foundation of China under Crants No. 61003283, No. 61001122 Beijing Natural Science Foundation of China under Crants No. 4102064+2 种基金 the Natural Science Foundation of Jiangsu Province under Crant No. BK2011171 the National High-Tech Research and Development Program of China under Crant No. 2011 AA010701 the Fundamental Research Funds for the Cen- tral Universities under Ccants No. 2011RC0507, No. 2012RO3603.
文摘As a core technology of Intemet of Things (loT), Wireless Sensor Network (WSN) has become a research hotspot recently. More and more WSNs are being deployed in highly mobile environments. The fast moving sensor nodes bring significant challenges for the routing decision. In this paper, we propose an efficient logical location method, and designe a mobility estimating metric and derive a novel Green Mobility Estirmtion- based Routing protocol (G-MER) for WSNs. We also set up a full framework to evaluate its per- formance. Simulation results illustrate that G-MER achieves a fairly better perforrmnce in terrm of broadcast times and link failures than AODV. What's more, it decreases the mean hops by about 0.25 and reduces energy consumption by about 10% during the whole experiment. All the results show that G-MER can be effectively used in fast- moving and limited resource scenarios.
基金supported by National Natural Science Foundation of China 61301091Shaanxi Province Science and Technology Project 2015GY015
文摘In this paper,an improved Susceptible-Infected-Susceptible(SIS) epidemic spreading model is proposed in order to provide a theoretical method to analyze and predict the spreading of diseases.This model is based on the following ideas:in social networks,the contact probability between nodes is decided by their social distances and their active degrees.The contact probability of two indirectly connected nodes is decided by the shortest path between them.Theoretical analysis and simulation experiment were conducted to evaluate the performance of this improved model.Because the proposed model is independent of the network structure,simulation experiments were done in several kinds of networks,namely the ER network,the random regular network,the WS small world network,and the BA scale-free network,in order to study the influences of certain factors have on the epidemic spreading,such as the social contact active degree,the network structure,the average degree,etc.This improved model provides an idea for studying the spreading rule of computer virus,attitudes,fashion styles and public opinions in social networks.