Conventional vacuum control in a milking system is accomplished by using a vacuum pump, sized for the maximum air flows into the milking system, running at a full speed. The difference between the pump capacity and th...Conventional vacuum control in a milking system is accomplished by using a vacuum pump, sized for the maximum air flows into the milking system, running at a full speed. The difference between the pump capacity and the necessary flow of air is compensated by allowing air to enter the system through a regulator. The solution presented in this paper uses a VFD (variable frequency driver) in order to drive the vacuum pump at a controlled speed, so that the air removed equals the air entering the milking system. The VFD technology is able to adjust the rate of air removal from the milking system, by changing the speed of the vacuum pump motor. The VFD is controlled by a computer using a virtual instrument in order to emulate a PID (proportion integration differentiation) regulator. The tests aimed to evaluate the vacuum regulator characteristics and vacuum stability. A statistical analysis of the experimental results was performed and it showed that there was a significant difference between the experimental results obtained for the two methods of vacuum regulation (with vacuum regulator and VFD controller respectively). The experimental results proved that the used of the VFD controller led to a higher vacuum stability in terms of the error between the set vacuum value and the achieved values.展开更多
文摘Conventional vacuum control in a milking system is accomplished by using a vacuum pump, sized for the maximum air flows into the milking system, running at a full speed. The difference between the pump capacity and the necessary flow of air is compensated by allowing air to enter the system through a regulator. The solution presented in this paper uses a VFD (variable frequency driver) in order to drive the vacuum pump at a controlled speed, so that the air removed equals the air entering the milking system. The VFD technology is able to adjust the rate of air removal from the milking system, by changing the speed of the vacuum pump motor. The VFD is controlled by a computer using a virtual instrument in order to emulate a PID (proportion integration differentiation) regulator. The tests aimed to evaluate the vacuum regulator characteristics and vacuum stability. A statistical analysis of the experimental results was performed and it showed that there was a significant difference between the experimental results obtained for the two methods of vacuum regulation (with vacuum regulator and VFD controller respectively). The experimental results proved that the used of the VFD controller led to a higher vacuum stability in terms of the error between the set vacuum value and the achieved values.