触发真空开关的电寿命是制约其发展的瓶颈,基于激光触发和快速操动机构的开关可解决此问题。当其工作电流过大时,快速操动机构动作联动激光触发间隙电极闭合。因为主电极和靶电极的烧蚀和相应的材料损耗是造成电寿命较短的主要原因,因...触发真空开关的电寿命是制约其发展的瓶颈,基于激光触发和快速操动机构的开关可解决此问题。当其工作电流过大时,快速操动机构动作联动激光触发间隙电极闭合。因为主电极和靶电极的烧蚀和相应的材料损耗是造成电寿命较短的主要原因,因此快速操动机构的应用所带来的开关寿命的增加是显著的。设计了基于激光触发和快速操动机构的开关,对其进行了静电场仿真,以优化参数。对开关进行了基本特性实验,当工作电压为250 k V,激光能量为2 m J时,开关延时为60 ns,抖动为5 ns。通过实验发现,随着激光能量和开关工作电压的升高,开关导通延时和抖动显著减少。该开关可应用在对寿命要求较高的脉冲功率系统中。展开更多
基于快速闭合开关在中压大电流下的工作需求,提高真空触发开关的应用电压等级,设计了一种大容量的40.5 k V真空触发开关。为了满足80 k A峰值电流的通流能力,该开关采用了多棒极型的主电极结构设计以增加开关的通流面积并提高开关的电...基于快速闭合开关在中压大电流下的工作需求,提高真空触发开关的应用电压等级,设计了一种大容量的40.5 k V真空触发开关。为了满足80 k A峰值电流的通流能力,该开关采用了多棒极型的主电极结构设计以增加开关的通流面积并提高开关的电气寿命。针对40.5 k V系统的绝缘要求,对电极结构进行了倒角优化。选取了合适的屏蔽罩尺寸,改善了开关内部电场的分布,提高了开关的绝缘性能。针对设计的开关,设计了触发系统,该系统可以稳定输出50 k V的脉冲电压和3 k A的触发电流,保证可靠触发开关。设计的样机通过了峰值80 k A,脉宽15 ms的短路电流试验,工作寿命20次,触发时延<15μs;短路电流试验前后进行了工频耐压试验和雷电冲击试验,试验结果表明开关具有较高的绝缘水平。展开更多
文摘触发真空开关的电寿命是制约其发展的瓶颈,基于激光触发和快速操动机构的开关可解决此问题。当其工作电流过大时,快速操动机构动作联动激光触发间隙电极闭合。因为主电极和靶电极的烧蚀和相应的材料损耗是造成电寿命较短的主要原因,因此快速操动机构的应用所带来的开关寿命的增加是显著的。设计了基于激光触发和快速操动机构的开关,对其进行了静电场仿真,以优化参数。对开关进行了基本特性实验,当工作电压为250 k V,激光能量为2 m J时,开关延时为60 ns,抖动为5 ns。通过实验发现,随着激光能量和开关工作电压的升高,开关导通延时和抖动显著减少。该开关可应用在对寿命要求较高的脉冲功率系统中。
文摘基于快速闭合开关在中压大电流下的工作需求,提高真空触发开关的应用电压等级,设计了一种大容量的40.5 k V真空触发开关。为了满足80 k A峰值电流的通流能力,该开关采用了多棒极型的主电极结构设计以增加开关的通流面积并提高开关的电气寿命。针对40.5 k V系统的绝缘要求,对电极结构进行了倒角优化。选取了合适的屏蔽罩尺寸,改善了开关内部电场的分布,提高了开关的绝缘性能。针对设计的开关,设计了触发系统,该系统可以稳定输出50 k V的脉冲电压和3 k A的触发电流,保证可靠触发开关。设计的样机通过了峰值80 k A,脉宽15 ms的短路电流试验,工作寿命20次,触发时延<15μs;短路电流试验前后进行了工频耐压试验和雷电冲击试验,试验结果表明开关具有较高的绝缘水平。