Infrared-vacuum ultraviolet (IR-VUV) spectra of neutral trimethylamine dimer were mea- sured in the 2500-3800 cm-1 region. Quantum chemical calculations were performed to identify the structure of the low-lying isom...Infrared-vacuum ultraviolet (IR-VUV) spectra of neutral trimethylamine dimer were mea- sured in the 2500-3800 cm-1 region. Quantum chemical calculations were performed to identify the structure of the low-lying isomers and to assign the observed spectral features. The bands at 2975 and 2949 cm-1 were assigned to the antisymmetric C-H stretching and the band at 2823 cm-1 to the symmetric C-H stretching, respectively. The 2739 cm-1 band was due to the CH3 bending overtone, which disappeared at low IR laser power of 1 mJ/mm2. The extra band at 2773 cm-1 could be due to Fermi resonance behavior of the light isotopologue, these are often close in energy and can strongly mix through cubic terms in the potential function. Experimental and theoretical results indicate the likely coexistence of multiple structures. The peak widths of IR spectra of neutral trimethylamine dimer are not significantly affected by the structural transformation, allowing the stretching modes to be well resolved.展开更多
文摘Infrared-vacuum ultraviolet (IR-VUV) spectra of neutral trimethylamine dimer were mea- sured in the 2500-3800 cm-1 region. Quantum chemical calculations were performed to identify the structure of the low-lying isomers and to assign the observed spectral features. The bands at 2975 and 2949 cm-1 were assigned to the antisymmetric C-H stretching and the band at 2823 cm-1 to the symmetric C-H stretching, respectively. The 2739 cm-1 band was due to the CH3 bending overtone, which disappeared at low IR laser power of 1 mJ/mm2. The extra band at 2773 cm-1 could be due to Fermi resonance behavior of the light isotopologue, these are often close in energy and can strongly mix through cubic terms in the potential function. Experimental and theoretical results indicate the likely coexistence of multiple structures. The peak widths of IR spectra of neutral trimethylamine dimer are not significantly affected by the structural transformation, allowing the stretching modes to be well resolved.