This review describes the present hot research areas of mangrove-associated fungi, including its biodiversity, ecological roles, novel metabolites productions and biotechnological potential. Mangrove-associated fungi ...This review describes the present hot research areas of mangrove-associated fungi, including its biodiversity, ecological roles, novel metabolites productions and biotechnological potential. Mangrove-associated fungi were divided into saprophytic, parasitic and true symbiotic fungi based on its ecological roles. Saprophytic fungi are fundamental to decomposition and energy flow of mangrove, additionally, their potential toxicity also exists. Pathogenic fungi have significant effects on mangrove survival, growth, and fitness. Endophytic fungi, the most prolific source of diverse bioactive compounds found among that of mangrove-associated fungi, are found in most species of mangroves. Although a significant number of reports focused on the antimicrobial, insecticidal and other bioactive metabolites as well as many novel enzymes isolatcd from mangrove-associated fungi, and many of those metabolites from endophytic fungi are suspected to be of significant to mangrove, only few studies have provided convincing evidence for symbiotic producers in mangrove. Hence, this paper discusses the present progress of molecular methods used to correlate the ecological roles of endophytic fungi with their bioactive metabolites;, meanwhile, the potential of using metabolic engineering and post-genomic approaches to isolate more novel enzymes and bioactive compounds and to make their possible commercial application was also discussed.展开更多
A chemical investigation of the ethyl acetate extract of the fermentation broth of Alternaria tenuissima EN- 192, an endophytic fungus obtained from the stems of the marine mangrove plant Rhizophora stylosa, resulted ...A chemical investigation of the ethyl acetate extract of the fermentation broth of Alternaria tenuissima EN- 192, an endophytic fungus obtained from the stems of the marine mangrove plant Rhizophora stylosa, resulted in the isolation of nine known secondary metabolites, including four indole-diterpenoids: penijanthine A (1), paspaline (2), paspalinine (3), and penitrem A (4); three tricycloalternarene derivatives: tricycloalternarene 3a (5), tricycloalternarene lb (6), and tricycloalternarene 2b (7); and two alternariol congeners: djalonensone (8) and alternariol (9). The chemical structures of these metabolites were characterized through a combination of detailed spectroscopic analyses and their comparison with reports from the literature. The inhibitory activities of each isolated compound against four bacteria were evaluated and compounds 5 and 8 displayed moderate activity against the aquaculture pathogenic bacterium Vibrio anguillarum, with inhibition zone diameters of 8 and 9 mm, respectively, at 100 gg/disk. To the best of our knowledge, this is the first report on the secondary metabolites of mangrove-derived Alternaria tenuissima and also the first report of the isolation ofindole-diterpenoids from fungal genus Alternaria.展开更多
基金Foundation project: This work was supported partly by the Guangzhou Natural Science Foundation (Grant No. 2007Z3-EO581), the Guangdong Provincial Natural Science Foundation (Grant No. 2007A0200300001-7 05003268), the Chinese High-Tech 863 Project (Grant No. 2006AA09Z422), and the National Natural Science Foundation of China (Grant No. 20572136).
文摘This review describes the present hot research areas of mangrove-associated fungi, including its biodiversity, ecological roles, novel metabolites productions and biotechnological potential. Mangrove-associated fungi were divided into saprophytic, parasitic and true symbiotic fungi based on its ecological roles. Saprophytic fungi are fundamental to decomposition and energy flow of mangrove, additionally, their potential toxicity also exists. Pathogenic fungi have significant effects on mangrove survival, growth, and fitness. Endophytic fungi, the most prolific source of diverse bioactive compounds found among that of mangrove-associated fungi, are found in most species of mangroves. Although a significant number of reports focused on the antimicrobial, insecticidal and other bioactive metabolites as well as many novel enzymes isolatcd from mangrove-associated fungi, and many of those metabolites from endophytic fungi are suspected to be of significant to mangrove, only few studies have provided convincing evidence for symbiotic producers in mangrove. Hence, this paper discusses the present progress of molecular methods used to correlate the ecological roles of endophytic fungi with their bioactive metabolites;, meanwhile, the potential of using metabolic engineering and post-genomic approaches to isolate more novel enzymes and bioactive compounds and to make their possible commercial application was also discussed.
基金Supported by the National Natural Science Foundation of China(Nos.30910103914,31270403)the Ministry of Science and Technology(No.2010CB833802)
文摘A chemical investigation of the ethyl acetate extract of the fermentation broth of Alternaria tenuissima EN- 192, an endophytic fungus obtained from the stems of the marine mangrove plant Rhizophora stylosa, resulted in the isolation of nine known secondary metabolites, including four indole-diterpenoids: penijanthine A (1), paspaline (2), paspalinine (3), and penitrem A (4); three tricycloalternarene derivatives: tricycloalternarene 3a (5), tricycloalternarene lb (6), and tricycloalternarene 2b (7); and two alternariol congeners: djalonensone (8) and alternariol (9). The chemical structures of these metabolites were characterized through a combination of detailed spectroscopic analyses and their comparison with reports from the literature. The inhibitory activities of each isolated compound against four bacteria were evaluated and compounds 5 and 8 displayed moderate activity against the aquaculture pathogenic bacterium Vibrio anguillarum, with inhibition zone diameters of 8 and 9 mm, respectively, at 100 gg/disk. To the best of our knowledge, this is the first report on the secondary metabolites of mangrove-derived Alternaria tenuissima and also the first report of the isolation ofindole-diterpenoids from fungal genus Alternaria.