Aims Alpine forest gaps can control understory ecosystem processes by manipulating hydrothermal dynamics.Here,we aimed to test the role of alpine forest gap disturbance on total phenol loss(TPL)from the decomposing li...Aims Alpine forest gaps can control understory ecosystem processes by manipulating hydrothermal dynamics.Here,we aimed to test the role of alpine forest gap disturbance on total phenol loss(TPL)from the decomposing litter of two typical shrub species(willow,Salix paraplesia Schneid.,and bamboo,Fargesia nitida(Mitford)Keng f.).Methods We conducted a field litterbag experiment within a representative fir(Abies faxoniana Rehd.)forest based on‘gap openness treatments’(plot positions in the gap included the gap center south,gap center north,canopy edge,expanded edge and closed canopy).The TPL rate and litter surface microbial abundance(fungi and bacteria)of the two shrub species were measured during the following periods over 2 years:snow formation(SF),snow cover(SC),snow melting(ST),the early growing season(EG)and the late growing season(LG).Important Findings At the end of the study,we found that snow cover depth,freeze–thaw cycle frequency and the fungal copies g−1 to bacterial copies g−1 ratio had significant effects on litter TPL.The abundances of fungi and bacteria decreased from the gap center to the closed canopy during the SF,SC,ST and LG periods and showed the opposite trend during the EG periods.The rate of TPL among plot positions closely followed the same trend as microbial abundance during the first year of incubation.In addition,both species had higher rates of TPL in the gap center than at other positions during the first winter,first year and entire 2-year period.These findings suggest that alpine forest gap formation accelerates litter TPL,although litter TPL exhibits dual responses to gap disturbance during specific critical periods.In conclusion,reduced snow cover depth and duration during winter warming under projected climate change scenarios or as gaps vanish may slow litter TPL in alpine biomes.展开更多
Soil microbial biomass is critical for biogeochemical cycling and serves as precursor for carbon(C)sequestration.The anthropogenic nitrogen(N)input has profoundly changed the pool of soil microbial biomass.However,tra...Soil microbial biomass is critical for biogeochemical cycling and serves as precursor for carbon(C)sequestration.The anthropogenic nitrogen(N)input has profoundly changed the pool of soil microbial biomass.However,traditional N deposition simulation experiments have been exclusively conducted through infrequent N addition,which may have caused biased effects on soil microbial biomass compared with those under the natural and continuous N deposition.Convincing data are still scarce about how the different N addition frequencies affect soil microbial biomass.By independently manipulating the frequencies(2 times vs.12 times N addition yr^(–1))and the rates(0–50 g N m^(−2) yr^(−1))of N addition,our study aimed to examine the response of soil microbial biomass C(MBC)to different N addition frequencies with increasing N addition rates.Soil MBC gradually decreased with increasing N addition rates under both N addition frequencies,while the soil MBC decreased more at low frequency of N addition,suggesting that traditional studies have possibly overestimated the effects of N deposition on soil microbial biomass.The greater soil microbial biomass loss with low N frequency resulted from the intensifed soil acidifcation,higher soil inorganic N,stronger soil C and N imbalance,less net primary production allocated to belowground and lower fungi to bacteria ratio.To reliably predict the effects of atmospheric N deposition on soil microbial functioning and C cycling of grassland ecosystems in future studies,it is necessary to employ both the dosage and the frequency of N addition.展开更多
基金supported by the National Natural Science Foundation of China(no.31570445 and 31800518).
文摘Aims Alpine forest gaps can control understory ecosystem processes by manipulating hydrothermal dynamics.Here,we aimed to test the role of alpine forest gap disturbance on total phenol loss(TPL)from the decomposing litter of two typical shrub species(willow,Salix paraplesia Schneid.,and bamboo,Fargesia nitida(Mitford)Keng f.).Methods We conducted a field litterbag experiment within a representative fir(Abies faxoniana Rehd.)forest based on‘gap openness treatments’(plot positions in the gap included the gap center south,gap center north,canopy edge,expanded edge and closed canopy).The TPL rate and litter surface microbial abundance(fungi and bacteria)of the two shrub species were measured during the following periods over 2 years:snow formation(SF),snow cover(SC),snow melting(ST),the early growing season(EG)and the late growing season(LG).Important Findings At the end of the study,we found that snow cover depth,freeze–thaw cycle frequency and the fungal copies g−1 to bacterial copies g−1 ratio had significant effects on litter TPL.The abundances of fungi and bacteria decreased from the gap center to the closed canopy during the SF,SC,ST and LG periods and showed the opposite trend during the EG periods.The rate of TPL among plot positions closely followed the same trend as microbial abundance during the first year of incubation.In addition,both species had higher rates of TPL in the gap center than at other positions during the first winter,first year and entire 2-year period.These findings suggest that alpine forest gap formation accelerates litter TPL,although litter TPL exhibits dual responses to gap disturbance during specific critical periods.In conclusion,reduced snow cover depth and duration during winter warming under projected climate change scenarios or as gaps vanish may slow litter TPL in alpine biomes.
基金supported by the National Natural Science Foundation of China(42130515 and31770506)the Open Foundation of the State Key Laboratory of Urban and Regional Ecology of Chinathe Open Foundation of the State Key Laboratory of Grassland Agro-ecosystems of China。
文摘Soil microbial biomass is critical for biogeochemical cycling and serves as precursor for carbon(C)sequestration.The anthropogenic nitrogen(N)input has profoundly changed the pool of soil microbial biomass.However,traditional N deposition simulation experiments have been exclusively conducted through infrequent N addition,which may have caused biased effects on soil microbial biomass compared with those under the natural and continuous N deposition.Convincing data are still scarce about how the different N addition frequencies affect soil microbial biomass.By independently manipulating the frequencies(2 times vs.12 times N addition yr^(–1))and the rates(0–50 g N m^(−2) yr^(−1))of N addition,our study aimed to examine the response of soil microbial biomass C(MBC)to different N addition frequencies with increasing N addition rates.Soil MBC gradually decreased with increasing N addition rates under both N addition frequencies,while the soil MBC decreased more at low frequency of N addition,suggesting that traditional studies have possibly overestimated the effects of N deposition on soil microbial biomass.The greater soil microbial biomass loss with low N frequency resulted from the intensifed soil acidifcation,higher soil inorganic N,stronger soil C and N imbalance,less net primary production allocated to belowground and lower fungi to bacteria ratio.To reliably predict the effects of atmospheric N deposition on soil microbial functioning and C cycling of grassland ecosystems in future studies,it is necessary to employ both the dosage and the frequency of N addition.