Arbuscular mycorrhizal fungi (AMF) are essential functional microbiology in natural ecosystems. It is very important to research community composition and di- versity of AMF for achieving sustainable development of ...Arbuscular mycorrhizal fungi (AMF) are essential functional microbiology in natural ecosystems. It is very important to research community composition and di- versity of AMF for achieving sustainable development of ecosystems. The paper described several methods of researching the diversity of AMF, especially for molecular techniques, reviewed the application status of these methods in AMF research, and pointed out that the effective combination of morphological and molecular methods could better reveal the biodiversity and ecological functions of AMF in natural ecosystems.展开更多
Sixteen polymorphic microsatellite markers suitable for population genetic structure analysis and signal transduction coding genes variation measurement were developed for rice blast fungus, Magnaporthe grisea. Polymo...Sixteen polymorphic microsatellite markers suitable for population genetic structure analysis and signal transduction coding genes variation measurement were developed for rice blast fungus, Magnaporthe grisea. Polymorphism was evaluated by using forty-six isolates collected from diverse geographical locations (including japonica grown zone, indica grown zone) and rice varieties. Preliminary results indicated that each locus resolved multiple alleles ranging from three to fourteen. The results showed that these SSR-containing genes are also polymorphic in the nature population.展开更多
Aims Bacteria and fungi are two primary groups of soil microbes,and their stability determines the persistence of microbial functions in response to a changing environment.Recent studies reported higher fungal than ba...Aims Bacteria and fungi are two primary groups of soil microbes,and their stability determines the persistence of microbial functions in response to a changing environment.Recent studies reported higher fungal than bacterial stability under precipitation alteration,the underlying mechanisms,however,remain elusive.Methods A 3-year precipitation manipulation experiment in a semi-arid grassland was used to compare the bacterial and fungal diversities,including alpha diversity,beta diversity and microbial community composition turnover,in response to precipitation manipulations.A framework is proposed to understand the stability properties of bacteria and fungi under precipitation alteration.We conceived a diagrammatic valley to illustrate microbial stability with the depth representing resistance and the width ecological resilience.Important Findings We found that±60%in precipitation significantly reduced the richness and increased the evenness of bacteria but had trivial impacts on fungi.Precipitation alteration yielded stronger impacts on the variation in alpha diversity of bacteria than fungi,suggesting that the bacterial community is more sensitive to water stress than the fungal community.Moreover,fungi had wider composition turnover than that of bacteria,indicating higher composition variation of fungi than bacteria.The population turnover of fungi,reflected by composition variation,coefficient variation of diversity index and composition turnover,was larger than that of bacteria at both temporal and spatial scales,indicating the population turnover promotes fungal stability.The higher stability of fungal community in tolerating water stress is analogous to a ball in a wide valley that swing substantially but remain close to its steady state;while the lower stability of bacteria community is analogous to a ball that swings slightly but stay far away from its steady state.Our finding that the fungal community had higher stability than bacterial community in a semi-arid grassland might be applicable to other biomes.展开更多
基金Supported by National Natural Science Foundation of China (30900963)Natural Science Foundation of Yunnan Province (2009ZC072M)Scientific Research Pogram of Yunnan Provincial Educaition Department (09Z0038)~~
文摘Arbuscular mycorrhizal fungi (AMF) are essential functional microbiology in natural ecosystems. It is very important to research community composition and di- versity of AMF for achieving sustainable development of ecosystems. The paper described several methods of researching the diversity of AMF, especially for molecular techniques, reviewed the application status of these methods in AMF research, and pointed out that the effective combination of morphological and molecular methods could better reveal the biodiversity and ecological functions of AMF in natural ecosystems.
文摘Sixteen polymorphic microsatellite markers suitable for population genetic structure analysis and signal transduction coding genes variation measurement were developed for rice blast fungus, Magnaporthe grisea. Polymorphism was evaluated by using forty-six isolates collected from diverse geographical locations (including japonica grown zone, indica grown zone) and rice varieties. Preliminary results indicated that each locus resolved multiple alleles ranging from three to fourteen. The results showed that these SSR-containing genes are also polymorphic in the nature population.
基金supported by the Chinese National Key Development Program for Basic Research(grant no.2017YFA0604802 and 2016YFC0500703)National Natural Science Foundation of China(grant no.31770526 and 41573063)+1 种基金Strategic Priority Research Program on Soil and Microbes of the Chinese Academy of Sciences(grant no.XDB15010401)Key Laboratory of Vegetation Ecology,Ministry of Education.X.X.acknowledges the financial support from the San Diego State University and the CSU Program for Education&Research in Biotechnology.
文摘Aims Bacteria and fungi are two primary groups of soil microbes,and their stability determines the persistence of microbial functions in response to a changing environment.Recent studies reported higher fungal than bacterial stability under precipitation alteration,the underlying mechanisms,however,remain elusive.Methods A 3-year precipitation manipulation experiment in a semi-arid grassland was used to compare the bacterial and fungal diversities,including alpha diversity,beta diversity and microbial community composition turnover,in response to precipitation manipulations.A framework is proposed to understand the stability properties of bacteria and fungi under precipitation alteration.We conceived a diagrammatic valley to illustrate microbial stability with the depth representing resistance and the width ecological resilience.Important Findings We found that±60%in precipitation significantly reduced the richness and increased the evenness of bacteria but had trivial impacts on fungi.Precipitation alteration yielded stronger impacts on the variation in alpha diversity of bacteria than fungi,suggesting that the bacterial community is more sensitive to water stress than the fungal community.Moreover,fungi had wider composition turnover than that of bacteria,indicating higher composition variation of fungi than bacteria.The population turnover of fungi,reflected by composition variation,coefficient variation of diversity index and composition turnover,was larger than that of bacteria at both temporal and spatial scales,indicating the population turnover promotes fungal stability.The higher stability of fungal community in tolerating water stress is analogous to a ball in a wide valley that swing substantially but remain close to its steady state;while the lower stability of bacteria community is analogous to a ball that swings slightly but stay far away from its steady state.Our finding that the fungal community had higher stability than bacterial community in a semi-arid grassland might be applicable to other biomes.