[Objective] The aim was to study effect of Chaetomium globosum ND35 on plant growth and preliminary study of its biocontrol efficacy, and provide basis for popularization and application of this strain.[ Method] With ...[Objective] The aim was to study effect of Chaetomium globosum ND35 on plant growth and preliminary study of its biocontrol efficacy, and provide basis for popularization and application of this strain.[ Method] With endophytic fungus C. globosum ND35 as a tested strain, effect of C. globosumND35 on plant growth and its biocontrol on five plant diseases were investigated in the greenhouse and field,[Result]The results showed that ND35 promoted growth of lateral root and diameter of breast height of poplar. ND35 can induce poplar to resist Poplar Valsa Canker caused by Valsa sordida and Poplar Rust caused by Melampsora puplicola. ND35 was also able to induce tomato and bean to resist Botrytis cinera. Biocontrol of Bean Stem Rot Rhizoctonia by ND35 was effective as well. [Conclusion] Induced systemic resistance by endophytic C. globosum ND35 plays an important role in biocontrol of plant diseases.展开更多
The use of entomopathogenic fungi to control mosquitoes is a promising tool for reducing vector-borne disease transmission. To better understand infection stratagems of insect pathogenic fungi, we analyzed the global ...The use of entomopathogenic fungi to control mosquitoes is a promising tool for reducing vector-borne disease transmission. To better understand infection stratagems of insect pathogenic fungi, we analyzed the global gene expression profiling of Beauveria bassiana at 36, 60, 84 and 108 h after topical infection of Anopheles stephensi adult mosquitoes using RNA sequencing (RNA-Seq). A total of 5,354 differentially expressed genes (DEGs) are identified over the course of fungal infection. When the fungus grows on the mosquito cuticle, up-regulated DEGs include adhesion-related genes involved in cuticle attachment, Pthl l-like GPCRs hypothesized to be involved in host recognition, and extracellular enzymes involved in the degradation and penetration of the mosquito cuticle. Once in the mosquito hemocoel, the fungus evades mosquito immune system probably through up-regulating expression of 13-1,3-glucan degrading enzymes and chitin synthesis enzymes for remodeling of cell walls. Moreover, six previous unknown SSCP (small secreted cysteine-rich proteins) are significantly up-regulated, which may serve as "effectors" to suppress host defense responses. B. bassiana also induces large amounts of antioxidant genes to mitigate host-generated exogenous oxidative stress. At late stage of infection, B. bassiana activates a broad spectrum of genes including nutrient degrading enzymes, some transporters and metabolism pathway components, to exploit mosquito tissues and hemolymph as a nutrient source for hyphal growth. These findings establish an important framework of knowledge for further comprehensive elucidation of fungal pathogenesis and molecular mechanism of Beauveria-mosquito interactions.展开更多
基金Supported by National Natural Science Foundation of China(30872024,30571498)Students Research Training (SRT) of Shandong Agricultural University (0802024)~~
文摘[Objective] The aim was to study effect of Chaetomium globosum ND35 on plant growth and preliminary study of its biocontrol efficacy, and provide basis for popularization and application of this strain.[ Method] With endophytic fungus C. globosum ND35 as a tested strain, effect of C. globosumND35 on plant growth and its biocontrol on five plant diseases were investigated in the greenhouse and field,[Result]The results showed that ND35 promoted growth of lateral root and diameter of breast height of poplar. ND35 can induce poplar to resist Poplar Valsa Canker caused by Valsa sordida and Poplar Rust caused by Melampsora puplicola. ND35 was also able to induce tomato and bean to resist Botrytis cinera. Biocontrol of Bean Stem Rot Rhizoctonia by ND35 was effective as well. [Conclusion] Induced systemic resistance by endophytic C. globosum ND35 plays an important role in biocontrol of plant diseases.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDB11010500)National Key R&D Program of China(2017YFD0200400,SQ2017ZY060066)the Hundred Talents Program of the Chinese Academy of Sciences
文摘The use of entomopathogenic fungi to control mosquitoes is a promising tool for reducing vector-borne disease transmission. To better understand infection stratagems of insect pathogenic fungi, we analyzed the global gene expression profiling of Beauveria bassiana at 36, 60, 84 and 108 h after topical infection of Anopheles stephensi adult mosquitoes using RNA sequencing (RNA-Seq). A total of 5,354 differentially expressed genes (DEGs) are identified over the course of fungal infection. When the fungus grows on the mosquito cuticle, up-regulated DEGs include adhesion-related genes involved in cuticle attachment, Pthl l-like GPCRs hypothesized to be involved in host recognition, and extracellular enzymes involved in the degradation and penetration of the mosquito cuticle. Once in the mosquito hemocoel, the fungus evades mosquito immune system probably through up-regulating expression of 13-1,3-glucan degrading enzymes and chitin synthesis enzymes for remodeling of cell walls. Moreover, six previous unknown SSCP (small secreted cysteine-rich proteins) are significantly up-regulated, which may serve as "effectors" to suppress host defense responses. B. bassiana also induces large amounts of antioxidant genes to mitigate host-generated exogenous oxidative stress. At late stage of infection, B. bassiana activates a broad spectrum of genes including nutrient degrading enzymes, some transporters and metabolism pathway components, to exploit mosquito tissues and hemolymph as a nutrient source for hyphal growth. These findings establish an important framework of knowledge for further comprehensive elucidation of fungal pathogenesis and molecular mechanism of Beauveria-mosquito interactions.