Based on the multi-body kinematics principle, the topological structure and restriction relation among parts of machine tool and 3D multi-body model are constructed, the kinematics simulation system of machine tool is...Based on the multi-body kinematics principle, the topological structure and restriction relation among parts of machine tool and 3D multi-body model are constructed, the kinematics simulation system of machine tool is developed. The designer can observe the movement and machining course of the whole machine tool and understand accurately the kinematics parameters of components such as position, velocity and acceleration. Also the designer can estimate the pose of components in the virtual circumstance and forecast accurately and correct problems which may appear during the design before the prototype is manufactured to assure the feasibility of design scheme, shorten period of product design and reduce product cost. The simulation system is used during the design of CK1416 high speed and precision numerical control lathe. The curves of ball screw angular velocity and carriage displacement agree well with the results of theoretical calculation and the constructed model is correct.展开更多
To solve the problem of inaccurate angle adjustment in the self-assembly process, a new homogenous hybrid modular self-reconfigurable robot-Xmobot is designed. Each module has four rotary joints and a self-turning mec...To solve the problem of inaccurate angle adjustment in the self-assembly process, a new homogenous hybrid modular self-reconfigurable robot-Xmobot is designed. Each module has four rotary joints and a self-turning mechanism. With the proposed self-turning mechanism, the angle adjusting accuracy of the module is increased to 2°, and the relative position adjusting efficiency of the module in the self-assembly process is also improved. The measured maximum moving distance of the proposed module in a gait cycle is 11.0 cm. Aiming at the multiple degree of freedom (MDOF) feature of the proposed module, a motion controller based on the central pattern generator (CPG) is proposed. The control of five joints of the module only requires two CPG oscillators. The CPG-based motion controller has three basic output modes, i. e. the oscillation, the rotation, and the fixed modes. The serpentine and the wheeled movements of the H-shaped robot are simulated, respectively. The results show that the average velocities of the two movements are 15. 2 and 20. 1 m/min, respectively. The proposed CPG-based motion controller is evaluated to be effective.展开更多
Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary jo...Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary joints and one cubic link. An attached/detached mechanism was designed on the rotary joints. A novel space transmitting system was placed on the inner portion of the cubic link. A motor separately transmitted torque to the six joints which were distributed equally on six surfaces of the cubic link. The example of a basic motion for the module was demonstrated. The result shows that the robot is concise and compact in structure, highly efficient in transmission, credible in connecting, and simple in controlling. At the same time, a simulator is developed to graphically design the system configuration, the reconfiguration process and the motion of cluster modules. The character of local action for the cellular automata (CA) is utilized. Each module is simplified as a cell. The transition rules of the CA are developed to combine with the genetic algorithm (GA) and applied to each module to accomplish distributed control. Simulation proves that the method is effective and feasible.展开更多
A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to ge...A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.展开更多
Contact reactions of guide surfaces of assembly interfaces lead to the decreasing of theirs lateral and angular misalignments. The focus of this paper is the development of algorithms for computation of guide surfaces...Contact reactions of guide surfaces of assembly interfaces lead to the decreasing of theirs lateral and angular misalignments. The focus of this paper is the development of algorithms for computation of guide surfaces contact forces with acceptable engineering accuracy for real time simulation of assembly operations. Therefore, each complex guide surface is described as a set of contacting elements. Each contacting element for one's part can be represented by a finite set of geometric primitives which geometry is described by low order algebraic equations. So contact conditions and geometric parameters for all pairs of primitives are determined by analytical expressions. Math models are developed for two classes of contact interaction. The first class includes all cases when each contacting surface has several degrees of freedom of motion. Therefore, contact reactions introduced into differential equations of motion are calculated by using contacting elements penetrations, stiffness and damping parameters. The second class corresponds to all cases when one of contacting surfaces has insignificant inertia and only one degree of freedom of relative displacement counteracted by a spring. Here contact reactions are calculated from spring tension with any practical accuracy. This is very useful in some practical applications. Presented algorithms provide real time simulation together with some approaches for reduction of redundant comnutations.展开更多
This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a t...This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.展开更多
Accurate modeling and simulation of autonomous underwater vehicle (AUV) is essential for autonomous control and maneuverability research. In this paper, a mini AUV- "MAUV-Ⅱ" was researched and the nonlinear mathe...Accurate modeling and simulation of autonomous underwater vehicle (AUV) is essential for autonomous control and maneuverability research. In this paper, a mini AUV- "MAUV-Ⅱ" was researched and the nonlinear mathematic model of the AUV in spatial motion was derived based on momentum theorem. The forces acting on AUV were resolved to several modules which were expressed in matrix form. Based on the motion model and combined with virtual reality technology, a motion simulation system was constructed. Considering the characteristic of "MAUV-Ⅱ ", the heading control and depth control were simulated by adopting S-surface control method. A long distance traveling simulation experiment based on target planning was also done. The simulation results show that the "MAUV-Ⅱ" has good spatial maneuverability, and verify the feasibility and reliability of control software.展开更多
To find out the detailed characteristics of the coherent structures and associated particle dispersion in free shear flow, large eddy simulation method was adopted to investigate a two-dimensional particleladen wake f...To find out the detailed characteristics of the coherent structures and associated particle dispersion in free shear flow, large eddy simulation method was adopted to investigate a two-dimensional particleladen wake flow. The well-known Sub-grid Scale mode introduced by Smagorinsky was employed to simulate the gas flow field and Lagrangian approach was used to trace the particles. The results showed that the typical large-scale vortex structures exhibit a stable counter rotating arrangement of opposite sign, and alternately form from the near wall region, shed and move towards the downstream positions of the wake with the development of the flow. For particle dispersion, the Stokes number of particles is a key parameter. At the Stokes numbers of 1.4 and 3.8 the particles concentrate highly in the outer boundary regions. While the particles congregate densely in the vortex core regions at the Stokes number of 0. 15, and the particles at Stokes number of 15 assemble in the vortex braid regions and the rib regions between the adjoining vortex structures.展开更多
Taking the steady motion status as a starting point,according to the modeling of actual state of theoretical analysis,a predigested model of supercavity vehicle was established,and relationship expressions of these an...Taking the steady motion status as a starting point,according to the modeling of actual state of theoretical analysis,a predigested model of supercavity vehicle was established,and relationship expressions of these angles were obtained when the movement of supercavity vehicle was stable.A theoretical analysis on the stability of underwater high-speed movement in the movement simulation program was conducted and the simulation results were given.Then the force status of the supercavity vehicle was elicited from the results.The finite element analysis was carried out based on the stability at all angles obtained from simulation results.Taking a pilot model as example,the Monte Carlo method was adopting to analyze the reliability with the given state of force and displacement.The result indicates that this method is feasible.展开更多
To analyze the stress of the guiding & positioning board and the effectiveness of the guiding & positioning device,according to guiding & positioning device's operational principle and structure,the gu...To analyze the stress of the guiding & positioning board and the effectiveness of the guiding & positioning device,according to guiding & positioning device's operational principle and structure,the guiding & positioning board's motion regular was analyzed by diagrammatical method based on 2 postulated conditions.Considering about the working conditions' change,simulations in 5 different kinds of working conditions were done to check the correctness of the motion regulars obtained by diagrammatical method.Simulation results prove that the motion regulars are right,the postulated conditions have no effect on the obtained motion regulars.According to the simulation results,the motion processs's characters were drawn out at the same time.展开更多
We calculate the Casimir force at a finite cut-off A by summing the forces induced by the all fluctuation modes. We show that the Casimir force is independent of the cut-off function in the limit L∧ → ∞. There is a...We calculate the Casimir force at a finite cut-off A by summing the forces induced by the all fluctuation modes. We show that the Casimir force is independent of the cut-off function in the limit L∧ → ∞. There is a correction in the order of (L∧)^-2, when L∧ is finite and large. This correction becomes remarkable when L is comparable with the microscopic length scale ∧^-1. It has been demonstrated that the Casimir force at a finite cut-off should be defined by summing forces of all fluctuation modes, instead of the derivative of Casimir energy with respect to L where an additional derivative of the cut-off function has been introduced.展开更多
The structure and single-particle motion of a two-dimensional dusty plasma have been investigated. Pair correlation function, mean square displacement, velocity autocorrelation function, and the corresponding spectrum...The structure and single-particle motion of a two-dimensional dusty plasma have been investigated. Pair correlation function, mean square displacement, velocity autocorrelation function, and the corresponding spectrum function have been computed by molecular dynamical simulation. The results show that the coagulation of a two-dimensional dusty plasma system is strongly affected by particle density and temperature, which are discussed in details.展开更多
Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and densit...Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and density model of the crust in the Yanqing-Huailai Basin,this paper makes a simulation of ground motion at Guanting Reservoir Dam based on the scenario earthquake in the Yanqing-Huailai Basin. Comparative analysis shows that the results of 3D finite-difference simulation accord with those of the empirical formula. The parameters such as the velocity-time series of ground motion,PGV and frequency might be referred to for the analysis of seismic protection design of the dam's structure.展开更多
Tibet Plateau in mountain system is becoming one of the focuses of global technique research, because its crust is marvelous thick, which is twice of the normal thickness of mountain system in lithosphere, and its rap...Tibet Plateau in mountain system is becoming one of the focuses of global technique research, because its crust is marvelous thick, which is twice of the normal thickness of mountain system in lithosphere, and its rapid raise from the Quaternary. By using a finite element analysis software ABAQUS, the numeric analysis has been carried out and presented in this paper for the lithosphere stress field. It is the first time to use the displacement loading in the simulation of Tibet Plateau. During the analysis, the deformed elements are used to simulate the structure band, and friction mechanism is used to model the fracture band. The boundary conditions are given according to the boundary displacements around the Plateau. The stress and displacement distributions are obtained for the geological evolution of the plateau, which are consistent with P axial orientations of the seismic origin mechanism and the measures principle stress orientations. The analysis is also given for the dynamic lithosphere evolution of the Mountain System in the Tibet Plateau.展开更多
A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajec...A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.展开更多
This study involved investigating the sensitivity of Measures of Effectiveness (MOEs) to different simulation initialization time (7, 10, and 13 minutes); observing the trend of variation of MOEs with increasing s...This study involved investigating the sensitivity of Measures of Effectiveness (MOEs) to different simulation initialization time (7, 10, and 13 minutes); observing the trend of variation of MOEs with increasing simulation runs; and identifying the major contributors of variation in MOEs using CORSIM and SimTraffic. The results showed that (1) the MOEs of a simulated intersection approaches were indeed sensitive to initialization times; (2) the variation within MOEs reached a steady state with increased number of simulation runs, while CORSIM required at least 50 simulation runs, SimTraffic required even higher number of runs for congested approaches; (3) lane changing and gap acceptance parameters play a major role as a source of variation of MOEs (delay/vehicle) in CORSIM and SimTraffic respectively.展开更多
Realistic 3D-animation is used in all motion simulation systems of mechanisms and other mechanicals systems. It provides a high-quality illustration of time processes, but it has a weak capability for analysis of thei...Realistic 3D-animation is used in all motion simulation systems of mechanisms and other mechanicals systems. It provides a high-quality illustration of time processes, but it has a weak capability for analysis of their dynamics, for simultaneous display of contact interaction and functioning of mechanisms of different motion types. A spacecraft docking is characterized by a complex contact interaction of docking assemblies with mechanisms and devices of different motion types. Integration and time synchronization of the animation, plots and numerical values greatly facilitates the understanding of dynamics features of these processes. Usage of simple wireframe graphical models allows displaying all contact points. A changing of the set of graphical elements focuses attention on major events of a simulated process. Graphical models developed with consideration of these features and used for spacecraft docking simulation analysis are called dynamic diagrams and described in this paper.展开更多
In this paper, the structural and single-particle motive properties of a two-dimensional dusty plasmas are investigated numerically by molecular dynamics simulation within the framework of a dissipative Yukawa model. ...In this paper, the structural and single-particle motive properties of a two-dimensional dusty plasmas are investigated numerically by molecular dynamics simulation within the framework of a dissipative Yukawa model. The pair correlation function, the mean square displacement, the static structure factor, and the bond angle correlation function characterizing the structural properties, and the velocity autocorrelation function with Fourier spectrum function characterizing the single-particle motion have been calculated for different values of coupling constant r and viscous damping constant vf. The results show that the system will coagulate quickly with increasing viscous damping constant and coupling constant, and the critical value of friction parameter decreases with increasing the coupling constant in the system.展开更多
文摘Based on the multi-body kinematics principle, the topological structure and restriction relation among parts of machine tool and 3D multi-body model are constructed, the kinematics simulation system of machine tool is developed. The designer can observe the movement and machining course of the whole machine tool and understand accurately the kinematics parameters of components such as position, velocity and acceleration. Also the designer can estimate the pose of components in the virtual circumstance and forecast accurately and correct problems which may appear during the design before the prototype is manufactured to assure the feasibility of design scheme, shorten period of product design and reduce product cost. The simulation system is used during the design of CK1416 high speed and precision numerical control lathe. The curves of ball screw angular velocity and carriage displacement agree well with the results of theoretical calculation and the constructed model is correct.
基金The National Natural Science Foundation of China(No.61375076)Research&Innovation Program for Graduate Student in Universities of Jiangsu Province(No.CXLX13-085)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1350)
文摘To solve the problem of inaccurate angle adjustment in the self-assembly process, a new homogenous hybrid modular self-reconfigurable robot-Xmobot is designed. Each module has four rotary joints and a self-turning mechanism. With the proposed self-turning mechanism, the angle adjusting accuracy of the module is increased to 2°, and the relative position adjusting efficiency of the module in the self-assembly process is also improved. The measured maximum moving distance of the proposed module in a gait cycle is 11.0 cm. Aiming at the multiple degree of freedom (MDOF) feature of the proposed module, a motion controller based on the central pattern generator (CPG) is proposed. The control of five joints of the module only requires two CPG oscillators. The CPG-based motion controller has three basic output modes, i. e. the oscillation, the rotation, and the fixed modes. The serpentine and the wheeled movements of the H-shaped robot are simulated, respectively. The results show that the average velocities of the two movements are 15. 2 and 20. 1 m/min, respectively. The proposed CPG-based motion controller is evaluated to be effective.
文摘Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary joints and one cubic link. An attached/detached mechanism was designed on the rotary joints. A novel space transmitting system was placed on the inner portion of the cubic link. A motor separately transmitted torque to the six joints which were distributed equally on six surfaces of the cubic link. The example of a basic motion for the module was demonstrated. The result shows that the robot is concise and compact in structure, highly efficient in transmission, credible in connecting, and simple in controlling. At the same time, a simulator is developed to graphically design the system configuration, the reconfiguration process and the motion of cluster modules. The character of local action for the cellular automata (CA) is utilized. Each module is simplified as a cell. The transition rules of the CA are developed to combine with the genetic algorithm (GA) and applied to each module to accomplish distributed control. Simulation proves that the method is effective and feasible.
文摘A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.
文摘Contact reactions of guide surfaces of assembly interfaces lead to the decreasing of theirs lateral and angular misalignments. The focus of this paper is the development of algorithms for computation of guide surfaces contact forces with acceptable engineering accuracy for real time simulation of assembly operations. Therefore, each complex guide surface is described as a set of contacting elements. Each contacting element for one's part can be represented by a finite set of geometric primitives which geometry is described by low order algebraic equations. So contact conditions and geometric parameters for all pairs of primitives are determined by analytical expressions. Math models are developed for two classes of contact interaction. The first class includes all cases when each contacting surface has several degrees of freedom of motion. Therefore, contact reactions introduced into differential equations of motion are calculated by using contacting elements penetrations, stiffness and damping parameters. The second class corresponds to all cases when one of contacting surfaces has insignificant inertia and only one degree of freedom of relative displacement counteracted by a spring. Here contact reactions are calculated from spring tension with any practical accuracy. This is very useful in some practical applications. Presented algorithms provide real time simulation together with some approaches for reduction of redundant comnutations.
基金Suppirted by the Programme of Introducing Talents of Discipline to Universities(B07019)
文摘This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.
基金Supported by National Natural Science Foundation under Grant No.50879014
文摘Accurate modeling and simulation of autonomous underwater vehicle (AUV) is essential for autonomous control and maneuverability research. In this paper, a mini AUV- "MAUV-Ⅱ" was researched and the nonlinear mathematic model of the AUV in spatial motion was derived based on momentum theorem. The forces acting on AUV were resolved to several modules which were expressed in matrix form. Based on the motion model and combined with virtual reality technology, a motion simulation system was constructed. Considering the characteristic of "MAUV-Ⅱ ", the heading control and depth control were simulated by adopting S-surface control method. A long distance traveling simulation experiment based on target planning was also done. The simulation results show that the "MAUV-Ⅱ" has good spatial maneuverability, and verify the feasibility and reliability of control software.
文摘To find out the detailed characteristics of the coherent structures and associated particle dispersion in free shear flow, large eddy simulation method was adopted to investigate a two-dimensional particleladen wake flow. The well-known Sub-grid Scale mode introduced by Smagorinsky was employed to simulate the gas flow field and Lagrangian approach was used to trace the particles. The results showed that the typical large-scale vortex structures exhibit a stable counter rotating arrangement of opposite sign, and alternately form from the near wall region, shed and move towards the downstream positions of the wake with the development of the flow. For particle dispersion, the Stokes number of particles is a key parameter. At the Stokes numbers of 1.4 and 3.8 the particles concentrate highly in the outer boundary regions. While the particles congregate densely in the vortex core regions at the Stokes number of 0. 15, and the particles at Stokes number of 15 assemble in the vortex braid regions and the rib regions between the adjoining vortex structures.
文摘Taking the steady motion status as a starting point,according to the modeling of actual state of theoretical analysis,a predigested model of supercavity vehicle was established,and relationship expressions of these angles were obtained when the movement of supercavity vehicle was stable.A theoretical analysis on the stability of underwater high-speed movement in the movement simulation program was conducted and the simulation results were given.Then the force status of the supercavity vehicle was elicited from the results.The finite element analysis was carried out based on the stability at all angles obtained from simulation results.Taking a pilot model as example,the Monte Carlo method was adopting to analyze the reliability with the given state of force and displacement.The result indicates that this method is feasible.
基金SRF of HLJ (No.F2004-15)SRF of HIT (No.HIT2003.20)
文摘To analyze the stress of the guiding & positioning board and the effectiveness of the guiding & positioning device,according to guiding & positioning device's operational principle and structure,the guiding & positioning board's motion regular was analyzed by diagrammatical method based on 2 postulated conditions.Considering about the working conditions' change,simulations in 5 different kinds of working conditions were done to check the correctness of the motion regulars obtained by diagrammatical method.Simulation results prove that the motion regulars are right,the postulated conditions have no effect on the obtained motion regulars.According to the simulation results,the motion processs's characters were drawn out at the same time.
基金National Natural Science Foundation of China under Grant No.10325418
文摘We calculate the Casimir force at a finite cut-off A by summing the forces induced by the all fluctuation modes. We show that the Casimir force is independent of the cut-off function in the limit L∧ → ∞. There is a correction in the order of (L∧)^-2, when L∧ is finite and large. This correction becomes remarkable when L is comparable with the microscopic length scale ∧^-1. It has been demonstrated that the Casimir force at a finite cut-off should be defined by summing forces of all fluctuation modes, instead of the derivative of Casimir energy with respect to L where an additional derivative of the cut-off function has been introduced.
文摘The structure and single-particle motion of a two-dimensional dusty plasma have been investigated. Pair correlation function, mean square displacement, velocity autocorrelation function, and the corresponding spectrum function have been computed by molecular dynamical simulation. The results show that the coagulation of a two-dimensional dusty plasma system is strongly affected by particle density and temperature, which are discussed in details.
基金sponsored by the key lab.program of Shaanxi Province (08JZ04)the key discipline fund for scientific research program of Baoji University of Arts and Science (ZK0796)the key discipline fund for natural geography of Shaanxi Province in Baoji University of Arts and Science
文摘Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and density model of the crust in the Yanqing-Huailai Basin,this paper makes a simulation of ground motion at Guanting Reservoir Dam based on the scenario earthquake in the Yanqing-Huailai Basin. Comparative analysis shows that the results of 3D finite-difference simulation accord with those of the empirical formula. The parameters such as the velocity-time series of ground motion,PGV and frequency might be referred to for the analysis of seismic protection design of the dam's structure.
文摘Tibet Plateau in mountain system is becoming one of the focuses of global technique research, because its crust is marvelous thick, which is twice of the normal thickness of mountain system in lithosphere, and its rapid raise from the Quaternary. By using a finite element analysis software ABAQUS, the numeric analysis has been carried out and presented in this paper for the lithosphere stress field. It is the first time to use the displacement loading in the simulation of Tibet Plateau. During the analysis, the deformed elements are used to simulate the structure band, and friction mechanism is used to model the fracture band. The boundary conditions are given according to the boundary displacements around the Plateau. The stress and displacement distributions are obtained for the geological evolution of the plateau, which are consistent with P axial orientations of the seismic origin mechanism and the measures principle stress orientations. The analysis is also given for the dynamic lithosphere evolution of the Mountain System in the Tibet Plateau.
基金Projects(90820302, 60805027, 61175064) supported by the National Natural Science Foundation of ChinaProject(2011ssxt231) supported by the Master Degree Thesis Innovation Project Foundation of Central South University, China+1 种基金Project(200805330005) supported by the Research Fund for the Doctoral Program of Higher Education, ChinaProject(2011FJ4043) supported by the Academician Foundation of Hunan Province, China
文摘A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.
文摘This study involved investigating the sensitivity of Measures of Effectiveness (MOEs) to different simulation initialization time (7, 10, and 13 minutes); observing the trend of variation of MOEs with increasing simulation runs; and identifying the major contributors of variation in MOEs using CORSIM and SimTraffic. The results showed that (1) the MOEs of a simulated intersection approaches were indeed sensitive to initialization times; (2) the variation within MOEs reached a steady state with increased number of simulation runs, while CORSIM required at least 50 simulation runs, SimTraffic required even higher number of runs for congested approaches; (3) lane changing and gap acceptance parameters play a major role as a source of variation of MOEs (delay/vehicle) in CORSIM and SimTraffic respectively.
文摘Realistic 3D-animation is used in all motion simulation systems of mechanisms and other mechanicals systems. It provides a high-quality illustration of time processes, but it has a weak capability for analysis of their dynamics, for simultaneous display of contact interaction and functioning of mechanisms of different motion types. A spacecraft docking is characterized by a complex contact interaction of docking assemblies with mechanisms and devices of different motion types. Integration and time synchronization of the animation, plots and numerical values greatly facilitates the understanding of dynamics features of these processes. Usage of simple wireframe graphical models allows displaying all contact points. A changing of the set of graphical elements focuses attention on major events of a simulated process. Graphical models developed with consideration of these features and used for spacecraft docking simulation analysis are called dynamic diagrams and described in this paper.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10547121 and 10175036
文摘In this paper, the structural and single-particle motive properties of a two-dimensional dusty plasmas are investigated numerically by molecular dynamics simulation within the framework of a dissipative Yukawa model. The pair correlation function, the mean square displacement, the static structure factor, and the bond angle correlation function characterizing the structural properties, and the velocity autocorrelation function with Fourier spectrum function characterizing the single-particle motion have been calculated for different values of coupling constant r and viscous damping constant vf. The results show that the system will coagulate quickly with increasing viscous damping constant and coupling constant, and the critical value of friction parameter decreases with increasing the coupling constant in the system.