-
题名基于深度学习的视网膜眼底图像的渗出分割方法研究
- 1
-
-
作者
邓健志
郭永平
周越菡
熊彬
-
机构
桂林理工大学地球科学学院
桂林理工大学物理与电子信息工程学院
桂林医学院药学院
-
出处
《中华眼底病杂志》
CAS
CSCD
北大核心
2024年第7期518-525,共8页
-
基金
国家自然科学基金(42174080)。
-
文摘
目的探索基于深度学习方法自动分割彩色眼底图像上糖尿病患者视网膜渗出特征的可行性。方法应用研究。基于印度糖尿病视网膜病变图像数据集(IDRID)模型的U型网络,将深度残差卷积引入到编码和解码阶段,使其能够有效提取渗出深度特征,解决过拟合和特征干扰问题,同时提升模型的特征表达能力和轻量化性能。此外,通过引入改进的上下文提取模块,使模型能捕捉更广泛的特征信息,增强对视网膜病灶的感知能力,尤其是提升捕捉微小细节和模糊边缘的能力。最后,引入卷积三重注意力机制,使模型能自动学习特征权重,关注重要特征,并从多个尺度提取有益信息。通过查准率、查全率、Dice系数、准确率和灵敏度来评估模型对彩色眼底图像上糖尿病患者自动视网膜渗出特征的检测与分割能力。结果应用本文研究方法后,改进模型在IDRID数据集上的查准率、查全率、相似系数、准确率、灵敏度、分别达到81.56%、99.54%、69.32%、65.36%、78.33%。与原始模型相比,改进模型的查准率和Dice系数分别提升了2.35%和3.35%。结论基于U型网络的分割方法能自动检测并分割出糖尿病患者眼底图像的视网膜渗出特征,对于辅助医生更准确地诊断疾病情况具有重要意义。
-
关键词
眼底渗出分割
U型网络
残差结构
上下文提取
卷积三重注意力
-
Keywords
Segmentation of retinal exudation
U-shaped network
Residual structure
Context extraction
Convolutional triple attention
-
分类号
R774.1
[医药卫生—眼科]
R587.2
[医药卫生—内分泌]
-