The characteristics of the particulate mouse centromere enriched fraction from isolated nuclei obtained in our laboratory were investigated by indirect immunoflu-orescence, test of the activity of microtubule organizi...The characteristics of the particulate mouse centromere enriched fraction from isolated nuclei obtained in our laboratory were investigated by indirect immunoflu-orescence, test of the activity of microtubule organizing center(MTOC), SDS-PAGE, and fluorescence in situ hybridization. Most of the particles of the fraction are complexes of DNA and kinetochore proteins and show MTOC activity. The DNA isolated from the fraction can hybridize with DNA in the regions of the primary constrictions of all chromosomes of ascites cells. The kinetochore proteins isolated from the fraction are mainly those with molecular weight of 55 KD and 59 KD. Results suggested that the fraction obtained is a centromere enriched nuclear fraction as indicated in our previous report.展开更多
The centromere, which is one of the essential parts of a chromosome, controls kinetochore formation and chromosome segregation during mitosis and meiosis. While centromere function is conserved in eukaryotes, the cent...The centromere, which is one of the essential parts of a chromosome, controls kinetochore formation and chromosome segregation during mitosis and meiosis. While centromere function is conserved in eukaryotes, the centromeric DNA sequences evolve rapidly and have few similarities among species. The histone H3 variant CENH3(CENP-A in human), which mostly exists in centromeric nucleosomes, is a universal active centromere mark in eukaryotes and plays an essential role in centromere identity determination. The relationship between centromeric DNA sequences and centromere identity determination is one of the intriguing questions in studying centromere formation. Due to the discoveries in the past decades, including "neocentromeres" and "centromere inactivation", it is now believed that the centromere identity is determined by epigenetic mechanisms. This review will present recent progress in plant centromere biology.展开更多
基金China National"863 Project"for Biotechmoloigt Development
文摘The characteristics of the particulate mouse centromere enriched fraction from isolated nuclei obtained in our laboratory were investigated by indirect immunoflu-orescence, test of the activity of microtubule organizing center(MTOC), SDS-PAGE, and fluorescence in situ hybridization. Most of the particles of the fraction are complexes of DNA and kinetochore proteins and show MTOC activity. The DNA isolated from the fraction can hybridize with DNA in the regions of the primary constrictions of all chromosomes of ascites cells. The kinetochore proteins isolated from the fraction are mainly those with molecular weight of 55 KD and 59 KD. Results suggested that the fraction obtained is a centromere enriched nuclear fraction as indicated in our previous report.
文摘The centromere, which is one of the essential parts of a chromosome, controls kinetochore formation and chromosome segregation during mitosis and meiosis. While centromere function is conserved in eukaryotes, the centromeric DNA sequences evolve rapidly and have few similarities among species. The histone H3 variant CENH3(CENP-A in human), which mostly exists in centromeric nucleosomes, is a universal active centromere mark in eukaryotes and plays an essential role in centromere identity determination. The relationship between centromeric DNA sequences and centromere identity determination is one of the intriguing questions in studying centromere formation. Due to the discoveries in the past decades, including "neocentromeres" and "centromere inactivation", it is now believed that the centromere identity is determined by epigenetic mechanisms. This review will present recent progress in plant centromere biology.