Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic metho...Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic method. Combining the way of elastic impact with the way of velocity replacement, the dynamics model of damping free vibration dynamics model with 3-degree of freedom(DOF) for lunar lander is obtained according to the vibration mechanics elementary theory. Based on Lagrange equations and the energy principle, the damping free vibration differential equations for the lunar lander with 3-DOF are derived and the equations are solved in simulation ways by means of ADAMS software. The conclusions obtained can be used for the design and manufacture of lunar lander.展开更多
This paper proposes a new type of tri-sectional wheel-based cable climbing robot which is able to climb up vertical cylindrical cables of a cable-stayed bridge. The robot is composed of three pairs of wheels equally s...This paper proposes a new type of tri-sectional wheel-based cable climbing robot which is able to climb up vertical cylindrical cables of a cable-stayed bridge. The robot is composed of three pairs of wheels equally spaced circularly which are joined by six connecting boards to form a whole closed hexagonal body to clasp a cable. The whole design is entirely modular to enable to assenably the robot on-siteeasy eaoily. To analyze the static features of the robot, a mathematical model of climbing is deduced. Furthermore, taking a cable with a diameter of 80mm as an example, we calculate the design parameters of the robot. For safly landing in the case of electrical accident, a centrifugal speed regulator is proposed and applied to consume useless energy generated when the robot is slipping down along the cables. A simplified mathematical model of the landing mechanism is deduced. Finally, several experiments on the climbing mechanism demonstrate that the robot can carry payloads less than 2.2kg to climb up a cable with diameters varying from 65mm to 205mm.展开更多
Three kinds of possible structures of legged lander including monocoqe, semi-monocoqe and space frame are compared, and the lightest space frame structure is selected as the lander's structure. Then, a new lander ...Three kinds of possible structures of legged lander including monocoqe, semi-monocoqe and space frame are compared, and the lightest space frame structure is selected as the lander's structure. Then, a new lander with four-legged truss structure is proposed. In the premise of ensuring that the main and assistant structures of landing legs are not changed, six possible lander body structures of the new lander are put forward. Taking the section size of each component of lander as design variables, and taking the total mass of the structure as the objective function, the six structures are analyzed by using the software Altair. OptiStruct and the results show that the mass of the basic structure is the lightest, and it is selected as the final design scheme of lander due to its simple structure and convenient manufacture. The optimization on the selected lander structure is conducted, and the detailed results are presented.展开更多
文摘Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic method. Combining the way of elastic impact with the way of velocity replacement, the dynamics model of damping free vibration dynamics model with 3-degree of freedom(DOF) for lunar lander is obtained according to the vibration mechanics elementary theory. Based on Lagrange equations and the energy principle, the damping free vibration differential equations for the lunar lander with 3-DOF are derived and the equations are solved in simulation ways by means of ADAMS software. The conclusions obtained can be used for the design and manufacture of lunar lander.
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA04Z234) and the China Postdoctoral Science Foundation ( No. 20090461051 )
文摘This paper proposes a new type of tri-sectional wheel-based cable climbing robot which is able to climb up vertical cylindrical cables of a cable-stayed bridge. The robot is composed of three pairs of wheels equally spaced circularly which are joined by six connecting boards to form a whole closed hexagonal body to clasp a cable. The whole design is entirely modular to enable to assenably the robot on-siteeasy eaoily. To analyze the static features of the robot, a mathematical model of climbing is deduced. Furthermore, taking a cable with a diameter of 80mm as an example, we calculate the design parameters of the robot. For safly landing in the case of electrical accident, a centrifugal speed regulator is proposed and applied to consume useless energy generated when the robot is slipping down along the cables. A simplified mathematical model of the landing mechanism is deduced. Finally, several experiments on the climbing mechanism demonstrate that the robot can carry payloads less than 2.2kg to climb up a cable with diameters varying from 65mm to 205mm.
基金Sponsored by the Project on Absorption of Intellects by Institutions of Higher Education for Academic Disciplinary Innovations(Grant No. B07018)
文摘Three kinds of possible structures of legged lander including monocoqe, semi-monocoqe and space frame are compared, and the lightest space frame structure is selected as the lander's structure. Then, a new lander with four-legged truss structure is proposed. In the premise of ensuring that the main and assistant structures of landing legs are not changed, six possible lander body structures of the new lander are put forward. Taking the section size of each component of lander as design variables, and taking the total mass of the structure as the objective function, the six structures are analyzed by using the software Altair. OptiStruct and the results show that the mass of the basic structure is the lightest, and it is selected as the final design scheme of lander due to its simple structure and convenient manufacture. The optimization on the selected lander structure is conducted, and the detailed results are presented.