The double drum coal shearer is widely applied for the underground coal exploration in the mining industry.The vibration and noise control are significant factors for the stability design of the double drum coal shear...The double drum coal shearer is widely applied for the underground coal exploration in the mining industry.The vibration and noise control are significant factors for the stability design of the double drum coal shearer.In this paper,the vibration properties of a double drum coal shearer are firstly investigated.The horizontal,transverse and torsional vibrations of the motor body and the angle displacements of the rockers are taken into account.The walking units and the hydraulic units are modeled by the stiffness-damping systems.The nonlinear equation of motion of the double drum coal shearer is established by applying the Lagrange’s equation.The nonlinear vibration response of the system is calculated by using the Runge Kutta numerical method.The effects of the shearing loads,the equivalent damping and stiffness of the walking units,the inclination angels of the rockers and the equivalent damping and stiffness of the hydraulic units on the vibration properties of the system are discussed.展开更多
An experiment model, scaled 1: 1, designed for studying a blasting method to clear away soot in a soot-delivery pipe in coal-burning power plant is described. By mixing RDX and Nitramon on a particular scale and stick...An experiment model, scaled 1: 1, designed for studying a blasting method to clear away soot in a soot-delivery pipe in coal-burning power plant is described. By mixing RDX and Nitramon on a particular scale and sticking the explosive cartridge on the outwall surface of the pipe, the experimental result makes clear that the controlled blasting method can get rid of the soot effectively. Under the action of the blasting compression wave and reflectance tension wave,the soot is destroyed effectively in the region of - 60° ~60° around the bIasting site, that creates a condition for the second blasting in the surplus soot.展开更多
We constructed two types of copper-doped metal-organic framework(MOF),i.e.,Cu@UiO-66-NH2 and Cu-UiO-66-NH2.In the former,Cu2+ions are impregnated in the pore space of the amine-functionalized,Zr-based UiO-66-NH2;while...We constructed two types of copper-doped metal-organic framework(MOF),i.e.,Cu@UiO-66-NH2 and Cu-UiO-66-NH2.In the former,Cu2+ions are impregnated in the pore space of the amine-functionalized,Zr-based UiO-66-NH2;while in the latter,Cu^2+ions are incorporated to form a bimetal-center MOF,with Zr^4+being partially replaced by Cu2+in the Zr-O oxo-clusters.Ultrafast spectroscopy revealed that the photoinduced relaxation kinetics associated with the ligand-to-cluster charge-transfer state is promoted for both Cudoped MOFs relative to undoped one,but in a sequence of Cu-UiO-66-NH2>Cu@UiO-66-NH2>UiO-66-NH2.Such a sequence turned to be in line with the trend observed in the visible-light photocatalytic hydrogen evolution activity tests on the three MOFs.These findings highlighted the subtle effect of copper-doping location in this Zr-based MOF system,further suggesting that rational engineering of the specific metal-doping location in alike MOF systems to promote the photoinduced charge separation and hence suppress the detrimental charge recombination therein is beneficial for achieving improved performances in MOF-based photocatalysis.展开更多
基金Projects(51975511,U1708254)supported by the National Natural Science Foundation of ChinaProject(N2003023)supported by the Fundamental Research Funds for the Central Universities of China+1 种基金Project(2019YFB2004400)supported by the National Key Research and Development Program of ChinaProject(2020-MS-092)supported by the Natural Science Foundation of Liaoning Province,China。
文摘The double drum coal shearer is widely applied for the underground coal exploration in the mining industry.The vibration and noise control are significant factors for the stability design of the double drum coal shearer.In this paper,the vibration properties of a double drum coal shearer are firstly investigated.The horizontal,transverse and torsional vibrations of the motor body and the angle displacements of the rockers are taken into account.The walking units and the hydraulic units are modeled by the stiffness-damping systems.The nonlinear equation of motion of the double drum coal shearer is established by applying the Lagrange’s equation.The nonlinear vibration response of the system is calculated by using the Runge Kutta numerical method.The effects of the shearing loads,the equivalent damping and stiffness of the walking units,the inclination angels of the rockers and the equivalent damping and stiffness of the hydraulic units on the vibration properties of the system are discussed.
文摘An experiment model, scaled 1: 1, designed for studying a blasting method to clear away soot in a soot-delivery pipe in coal-burning power plant is described. By mixing RDX and Nitramon on a particular scale and sticking the explosive cartridge on the outwall surface of the pipe, the experimental result makes clear that the controlled blasting method can get rid of the soot effectively. Under the action of the blasting compression wave and reflectance tension wave,the soot is destroyed effectively in the region of - 60° ~60° around the bIasting site, that creates a condition for the second blasting in the surplus soot.
基金the National Key Research and Development Program on Nano Science and Technology of the Ministry of Science and Technology of China(No.2016YFA0200602 and No.2018YFA0208702)the National Natural Science Foundation of China(No.21573211 and No.21633007)the Anhui Initiative in Quantum Information Technologies(No.AHY090200)。
文摘We constructed two types of copper-doped metal-organic framework(MOF),i.e.,Cu@UiO-66-NH2 and Cu-UiO-66-NH2.In the former,Cu2+ions are impregnated in the pore space of the amine-functionalized,Zr-based UiO-66-NH2;while in the latter,Cu^2+ions are incorporated to form a bimetal-center MOF,with Zr^4+being partially replaced by Cu2+in the Zr-O oxo-clusters.Ultrafast spectroscopy revealed that the photoinduced relaxation kinetics associated with the ligand-to-cluster charge-transfer state is promoted for both Cudoped MOFs relative to undoped one,but in a sequence of Cu-UiO-66-NH2>Cu@UiO-66-NH2>UiO-66-NH2.Such a sequence turned to be in line with the trend observed in the visible-light photocatalytic hydrogen evolution activity tests on the three MOFs.These findings highlighted the subtle effect of copper-doping location in this Zr-based MOF system,further suggesting that rational engineering of the specific metal-doping location in alike MOF systems to promote the photoinduced charge separation and hence suppress the detrimental charge recombination therein is beneficial for achieving improved performances in MOF-based photocatalysis.