TREAT(Transient Reactor Test Facility)是一种用于测试反应堆燃料和结构材料性能的实验堆。该堆结构复杂,采用气冷设计和石墨慢化,在径向和轴向上均具有很强的中子泄漏和非均匀性,对三维中子学的模拟提出了较大的挑战。PROTEUS-MOC由...TREAT(Transient Reactor Test Facility)是一种用于测试反应堆燃料和结构材料性能的实验堆。该堆结构复杂,采用气冷设计和石墨慢化,在径向和轴向上均具有很强的中子泄漏和非均匀性,对三维中子学的模拟提出了较大的挑战。PROTEUS-MOC由美国阿贡国家实验室和密歇根大学合作开发,采用二维特征线方法和一维间断伽辽金有限元方法分别处理角通量的径向和轴向分布。为测试PROTEUS-MOC的精度和效率,利用该程序对TREAT试验堆进行了稳态中子学计算。计算结果表明:PROTEUS-MOC程序的精度较高,能准确描述TREAT的轴向和径向的强中子泄漏。与Monte Carlo程序Serpent相比,特征值相对误差仅为0.12%。另外,PROTEUS-MOC所采用的加速方法 TLPCMFD(Two-Level pCMFD)可以将计算速度提高26倍。展开更多
Combining separated SHPB test device of Ф50 mm with ZDKT-type 1 transient magnetic resonance test system, long drop bar of 400 mm was used to impact coal specimens at four different speeds: 1.275, 3.287, 6.251, and ...Combining separated SHPB test device of Ф50 mm with ZDKT-type 1 transient magnetic resonance test system, long drop bar of 400 mm was used to impact coal specimens at four different speeds: 1.275, 3.287, 6.251, and 7.404 m/s. The change in waveform, the dynamic mechanical properties, and the generated effect of transient field during the coal deformation and fracture under the loads were discussed and analyzed. While magnetic signals during the coal fracture firstly needed EEMD, decomposition then had a FFT with Data Demon. The main results of the experiment are the following: the main frequency of magnetic signals was between 220 and 450 kHz and the instantaneous frequency during the damage of coal would have the instantaneous jump.展开更多
A new method is developed to assess and analyze the dynamic performance of hydrostatic bearing oil film by using an amulets-layer dynamic mesh technique. It is implemented using C Language to compile the UDF program o...A new method is developed to assess and analyze the dynamic performance of hydrostatic bearing oil film by using an amulets-layer dynamic mesh technique. It is implemented using C Language to compile the UDF program of a single oil film of the hydrostatic bearing. The effects of key lubrication parameters of the hydrostatic bearing are evaluated and analyzed under various working conditions,i.e. under no-load,a load of 40 t,a full load of 160 t,and the rotation speed of 1r/min,2r/min,4r/min,8r/min,16r/min,32r/min. The transient data of oil film bearing capacity under different load and rotation speed are acquired for a total of 18 working conditions during the oil film thickness changing. It allows the effective prediction of dynamic performance of large size hydrostatic bearing. Experiments on hydrostatic bearing oil film have been performed and the results were used to define the boundary conditions for the numerical simulations and validate the developed numerical model. The results showed that the oil film thickness became thinner with the increase of the operating time of the hydrostatic bearing,both the oil film rigidity and the oil cavity pressure increased significantly,and the increase of the bearing capacity was inversely proportional to the cube of the change of the film thickness. Meanwhile,the effect of the load condition on carrying capacity of large size static bearing was more important than the speed condition. The error between the simulation value and the experimental value was 4.25%.展开更多
This paper presents a detailed experimental and numerical study of aerodynamically produced noise which occurs due to turbulent structures created by the cowl cavity and side mirror. Measurements were carried out at V...This paper presents a detailed experimental and numerical study of aerodynamically produced noise which occurs due to turbulent structures created by the cowl cavity and side mirror. Measurements were carried out at Volvo aerodynamical wind tunnel on a Volvo XC60 production model. The configurations considered here are: side mirror On/Off with the cowl cavity open/closed. The results of exterior sound source mapping (with the intensity probe placed in the flow stream) have been compared with the results of the measurements inside the car. The contribution of the cowl area to overall wind noise level is measured in terms of AI% (Articulation Index) inside the compartment. It was shown that increase in AI by 2% could be attributed to the cowl generated wind noise. Transient numerical simulations of the turbulent flow around the car have been performed for all configurations. The results of the simulations show similarity to experimental results and give insight to the flow structures around the car.展开更多
文摘Combining separated SHPB test device of Ф50 mm with ZDKT-type 1 transient magnetic resonance test system, long drop bar of 400 mm was used to impact coal specimens at four different speeds: 1.275, 3.287, 6.251, and 7.404 m/s. The change in waveform, the dynamic mechanical properties, and the generated effect of transient field during the coal deformation and fracture under the loads were discussed and analyzed. While magnetic signals during the coal fracture firstly needed EEMD, decomposition then had a FFT with Data Demon. The main results of the experiment are the following: the main frequency of magnetic signals was between 220 and 450 kHz and the instantaneous frequency during the damage of coal would have the instantaneous jump.
基金Supported by the National Natural Science Foundation of China(No.51005063,51375123)National Science and Technology Cooperation Projects of China(No.2012DFR70840)
文摘A new method is developed to assess and analyze the dynamic performance of hydrostatic bearing oil film by using an amulets-layer dynamic mesh technique. It is implemented using C Language to compile the UDF program of a single oil film of the hydrostatic bearing. The effects of key lubrication parameters of the hydrostatic bearing are evaluated and analyzed under various working conditions,i.e. under no-load,a load of 40 t,a full load of 160 t,and the rotation speed of 1r/min,2r/min,4r/min,8r/min,16r/min,32r/min. The transient data of oil film bearing capacity under different load and rotation speed are acquired for a total of 18 working conditions during the oil film thickness changing. It allows the effective prediction of dynamic performance of large size hydrostatic bearing. Experiments on hydrostatic bearing oil film have been performed and the results were used to define the boundary conditions for the numerical simulations and validate the developed numerical model. The results showed that the oil film thickness became thinner with the increase of the operating time of the hydrostatic bearing,both the oil film rigidity and the oil cavity pressure increased significantly,and the increase of the bearing capacity was inversely proportional to the cube of the change of the film thickness. Meanwhile,the effect of the load condition on carrying capacity of large size static bearing was more important than the speed condition. The error between the simulation value and the experimental value was 4.25%.
文摘This paper presents a detailed experimental and numerical study of aerodynamically produced noise which occurs due to turbulent structures created by the cowl cavity and side mirror. Measurements were carried out at Volvo aerodynamical wind tunnel on a Volvo XC60 production model. The configurations considered here are: side mirror On/Off with the cowl cavity open/closed. The results of exterior sound source mapping (with the intensity probe placed in the flow stream) have been compared with the results of the measurements inside the car. The contribution of the cowl area to overall wind noise level is measured in terms of AI% (Articulation Index) inside the compartment. It was shown that increase in AI by 2% could be attributed to the cowl generated wind noise. Transient numerical simulations of the turbulent flow around the car have been performed for all configurations. The results of the simulations show similarity to experimental results and give insight to the flow structures around the car.