期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
关联色噪声对具有免疫监视下肿瘤细胞生长系统稳定性和瞬态性质的影响 被引量:1
1
作者 王国威 付燕 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期36-45,60,共11页
基于具有催化作用的Michaelis-Menten反应模型,得到一种更全面的具有免疫监视下肿瘤细胞生长系统的一维朗之万方程.考虑肿瘤细胞增殖过程中生长环境等因素的变化而导致生长率和死亡率的波动,通过线性化近似和最快下降等方法计算系统的... 基于具有催化作用的Michaelis-Menten反应模型,得到一种更全面的具有免疫监视下肿瘤细胞生长系统的一维朗之万方程.考虑肿瘤细胞增殖过程中生长环境等因素的变化而导致生长率和死亡率的波动,通过线性化近似和最快下降等方法计算系统的稳态概率分布函数和平均首次通过时间,并以此作为观察肿瘤细胞生长过程中的稳定性和瞬态性质的窗口,分析噪声对肿瘤细胞生长过程的影响.结果表明:1)当改变噪声强度D和Q时,肿瘤细胞数概率分布函数Pst(x)的结构会发生改变,系统产生多极值和单极值之间的结构转换,导致系统产生类相变;2)平均首次通过时间T+(xu→x+)是乘性噪声强度D的单调增函数,T-(xu→x-)却是D的单调减函数;3)T+(xu→x+)随加性噪声强度Q变化的图像出现一个类似“共振峰”的极大值,而T-(xu→x-)是关于Q的减函数;4)T+(xu→x+)随噪声间关联时间τ变化时,表现出单调递减和“共振峰”两种状态的转换,而T-(xu→x-)的图像随τ的变化呈现出单峰值样态;5)T+(xu→x+)随噪声间关联强度λ的变化出现类似于“共振峰”的极大值,T-(xu→x-)是λ的单调减函数.上述结果有助于人们掌握肿瘤细胞的生长动力学特性,不仅能够为临床上肿瘤细胞生长研究提供一定理论基础,而且还能为临床医学上肿瘤检测和治疗提供理论指导,对控制和治疗肿瘤疾病有一定的指导意义. 展开更多
关键词 肿瘤细胞 噪声 生长 瞬态性质 平均首通时间 稳定性
下载PDF
色噪声驱动的肿瘤细胞增长系统的瞬态性质:平均首通时间 被引量:14
2
作者 王参军 魏群 +1 位作者 郑宝兵 梅冬成 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第3期1375-1380,共6页
研究了受色高斯噪声驱动的肿瘤细胞增长系统的瞬态态性质(平均首通时间T).据Novikov定理和Fox近似方法得到相应的Fokker-Planck方程,使用最快下降法得到了肿瘤细胞增长系统的平均首通时间的解析表达式.经过数值计算,结果表明:肿瘤增长... 研究了受色高斯噪声驱动的肿瘤细胞增长系统的瞬态态性质(平均首通时间T).据Novikov定理和Fox近似方法得到相应的Fokker-Planck方程,使用最快下降法得到了肿瘤细胞增长系统的平均首通时间的解析表达式.经过数值计算,结果表明:肿瘤增长系统的T在正关联(0<λ<1,λ为关联噪声强度)和负关联(-1<λ<0)呈现出不同的特性.正关联时,噪声强度和对应的关联时间在态转化过程中起着相反的作用;然而,负关联时,肿瘤增长系统的T呈现出复杂的行为,即随着乘性噪声强度D和其自关联时间τ1的增长,T拥有一个极大值. 展开更多
关键词 色噪声 肿瘤细胞增长系统 平均首通时间 瞬态性质
原文传递
Nonlinear Diffusion and Transient Osmosis
3
作者 Akira Igarashi Lamberto Rondoni +1 位作者 Antonio Botrugno Marco Pizzi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第8期352-366,共15页
We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider ... We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call "transient osmosis". We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes. 展开更多
关键词 anomalous transport porous medium equation osmotic pressure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部