The mechanism of transport of chemicals in soil is an important research topic of environmental science and engineering, and some models and methods for a variety of solute transport problems have been done. Howeve...The mechanism of transport of chemicals in soil is an important research topic of environmental science and engineering, and some models and methods for a variety of solute transport problems have been done. However. most of previous works are usually for a soil column of infinite dimension. Starting from the one-dimension transient solute transport equation and its boundary and initial condition for a solute transport problem of soil column of finite length, this work has successfully applied a variable transformation to simplify the partial differential equation of solute transport problem. And an analytical serial solution for the simplified equation is then established by the so-called separated variable method and the superposition method. Compared with numerical methods such as finite different method and finite element method, this analytical solution is more accurate and of higher computation efficiency. In addition, the solution procedure presented could be extended for applications such as quality analysis, design of physical experimentation, or parameter estimation and measurement of solute transport problems.展开更多
The rocks surrounding a roadway exhibit some special and complex phenomena with increasing depth of excavation in underground engineering.Quasi-static analysis cannot adequately explain these engineering problems.The ...The rocks surrounding a roadway exhibit some special and complex phenomena with increasing depth of excavation in underground engineering.Quasi-static analysis cannot adequately explain these engineering problems.The computational model of a circular roadway considering the transient effect of excavation unloading is established for these problems.The time factor makes the solution of the problem difficult.Thus,the computational model is divided into a dynamic model and a static model.The Laplace integral transform and inverse transform are performed to solve the dynamic model and elasticity theory is used to analyze the static model.The results from an example show that circumferential stress increases and radial stress decreases with time.The stress difference becomes large gradually in this progress.The displacement increases with unloading time and decreases with the radial depth of surrounding rocks.It can be seen that the development trend of unloading and displacement is similar by comparing their rates.Finally,the results of ANSYS are used to verify the analytical solution.The contrast indicates that the laws of the two methods are basically in agreement.Thus,the analysis can provide a reference for further study.展开更多
基金Acknowledgements: The work was supported by the National Natural Science Foundation of China (No. 90502006/D0123), Hunan provincial Natural Science Foundation of China (No. 06JJ3020) and Scientific Research Fund of Hunan Provincial Education Department (No. 06C500).
文摘The mechanism of transport of chemicals in soil is an important research topic of environmental science and engineering, and some models and methods for a variety of solute transport problems have been done. However. most of previous works are usually for a soil column of infinite dimension. Starting from the one-dimension transient solute transport equation and its boundary and initial condition for a solute transport problem of soil column of finite length, this work has successfully applied a variable transformation to simplify the partial differential equation of solute transport problem. And an analytical serial solution for the simplified equation is then established by the so-called separated variable method and the superposition method. Compared with numerical methods such as finite different method and finite element method, this analytical solution is more accurate and of higher computation efficiency. In addition, the solution procedure presented could be extended for applications such as quality analysis, design of physical experimentation, or parameter estimation and measurement of solute transport problems.
基金supported by the National Natural Science Foundation of China (Nos.51479108 and 51174196)the National Basic Research Program of China (No.2014CB046300)+1 种基金Shandong University of Science and Technology (No.2012KYTD104)Research Start-up Project of Shandong University of Science and Technology (No.2015RCJJ061)
文摘The rocks surrounding a roadway exhibit some special and complex phenomena with increasing depth of excavation in underground engineering.Quasi-static analysis cannot adequately explain these engineering problems.The computational model of a circular roadway considering the transient effect of excavation unloading is established for these problems.The time factor makes the solution of the problem difficult.Thus,the computational model is divided into a dynamic model and a static model.The Laplace integral transform and inverse transform are performed to solve the dynamic model and elasticity theory is used to analyze the static model.The results from an example show that circumferential stress increases and radial stress decreases with time.The stress difference becomes large gradually in this progress.The displacement increases with unloading time and decreases with the radial depth of surrounding rocks.It can be seen that the development trend of unloading and displacement is similar by comparing their rates.Finally,the results of ANSYS are used to verify the analytical solution.The contrast indicates that the laws of the two methods are basically in agreement.Thus,the analysis can provide a reference for further study.