针对多层感知机(MLP)架构无法捕获会话序列上下文中的共现关系的问题,提出了一种基于图共现增强MLP的会话推荐模型GCE-MLP。首先,利用MLP架构捕获会话序列的顺序依赖关系,同时通过共现关系学习层获得序列上下文中的共现关系,并通过信息...针对多层感知机(MLP)架构无法捕获会话序列上下文中的共现关系的问题,提出了一种基于图共现增强MLP的会话推荐模型GCE-MLP。首先,利用MLP架构捕获会话序列的顺序依赖关系,同时通过共现关系学习层获得序列上下文中的共现关系,并通过信息融合模块得到会话表示;其次,设计了特定的特征选择层,旨在扩大不同关系学习层输入特征的差异性;最后,通过噪声对比任务最大化两种关系表征之间的互信息,进一步增强对会话兴趣的表征学习。在多个真实数据集上的实验结果表明GCE-MLP的推荐性能优于目前主流的模型,验证了该模型的有效性。与最优的MLP架构模型FMLP-Rec(Filter-enhanced MLP for Recommendation)相比,在Diginetica数据集上,P@20最高达到了54.08%,MRR@20最高达到了18.87%,分别提升了2.14和1.43个百分点;在Yoochoose数据集上,P@20最高达到了71.77%,MRR@20最高达到了31.78%,分别提升了0.48和1.77个百分点。展开更多
文摘针对多层感知机(MLP)架构无法捕获会话序列上下文中的共现关系的问题,提出了一种基于图共现增强MLP的会话推荐模型GCE-MLP。首先,利用MLP架构捕获会话序列的顺序依赖关系,同时通过共现关系学习层获得序列上下文中的共现关系,并通过信息融合模块得到会话表示;其次,设计了特定的特征选择层,旨在扩大不同关系学习层输入特征的差异性;最后,通过噪声对比任务最大化两种关系表征之间的互信息,进一步增强对会话兴趣的表征学习。在多个真实数据集上的实验结果表明GCE-MLP的推荐性能优于目前主流的模型,验证了该模型的有效性。与最优的MLP架构模型FMLP-Rec(Filter-enhanced MLP for Recommendation)相比,在Diginetica数据集上,P@20最高达到了54.08%,MRR@20最高达到了18.87%,分别提升了2.14和1.43个百分点;在Yoochoose数据集上,P@20最高达到了71.77%,MRR@20最高达到了31.78%,分别提升了0.48和1.77个百分点。