期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于统计归纳的状态知识发现算法与实现
1
作者 张德政 黄绍君 杨炳儒 《计算机工程与应用》 CSCD 北大核心 2001年第7期14-16,共3页
反映所研究对象的状态、变态和发展变化趋势及其相互之间关系的知识一直受到人们的关注,尤其是利用数据挖掘和知识发现的方法来获取这一类知识。文章基于归纳逻辑的统计归纳和语言场与语言值结构,提出这类知识的发现方法和实现算法,... 反映所研究对象的状态、变态和发展变化趋势及其相互之间关系的知识一直受到人们的关注,尤其是利用数据挖掘和知识发现的方法来获取这一类知识。文章基于归纳逻辑的统计归纳和语言场与语言值结构,提出这类知识的发现方法和实现算法,并通过实验验证了算法的有效性。该方法可适用于科学和工程数据库以及事务数据库的知识发现。 展开更多
关键词 数据挖掘 知识发现 统计归纳 知识发现算法 数据库
下载PDF
知识的综合发现:理论、概念及应用 被引量:5
2
作者 沙宗尧 边馥苓 陈江平 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2002年第4期397-402,共6页
提出了知识的综合发现思想 ,重点以空间对象关联中的相邻关系与空间特征属性为知识综合发现的研究对象 ,对相关问题进行了讨论 ,并提出了一个高效的知识综合发现算法。实例结果表明 ,本算法是高效的 ,发现的知识是有效、可理解的。
关键词 空间关联 空间综合信息表 知识发现算法 空间知识 数据库
下载PDF
基于知识发现和分层ELM的暂态失稳模式辨识
3
作者 李欣 胡晓乐 郭攀锋 《广西大学学报(自然科学版)》 CAS 北大核心 2021年第4期982-995,共14页
为了有效辨识电力系统暂态失稳后发电机的动态行为,以失稳后的功角数据为输入特征信息,提出一种基于知识发现和分层极限学习机(ELM)的失稳模式辨识方法。首先利用ELM快速辨识系统暂态不稳定的功角样本。为了充分利用不稳定样本自身结构... 为了有效辨识电力系统暂态失稳后发电机的动态行为,以失稳后的功角数据为输入特征信息,提出一种基于知识发现和分层极限学习机(ELM)的失稳模式辨识方法。首先利用ELM快速辨识系统暂态不稳定的功角样本。为了充分利用不稳定样本自身结构来挖掘关键信息,引入知识发现算法KODAMA以获取发电机的不稳定动态行为模式,构建失稳功角模态集。然后,根据所得模态数据集,为提高不稳定模式辨识的准确性,设计了分层ELM的辨识策略以辨识发电机的失稳模式。最后,在Nordic系统中验证所提方法的有效性,测试结果表明提出的辨识方法能够准确地辨识失稳模式,且在保证尽可能高精度的前提下,具有相对快速的评估速度。 展开更多
关键词 暂态稳定 知识发现算法 极限学习机 人工智能
下载PDF
DCAD:a Dual Clustering Algorithm for Distributed Spatial Databases 被引量:15
4
作者 ZHOU Jiaogen GUAN Jihong LI Pingxiang 《Geo-Spatial Information Science》 2007年第2期137-144,共8页
Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically... Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically scattered in a geometrical domain, spatial objects may be similar to each other in a non-geometrical domain. Most existing clustering algorithms group spatial datasets into different compact regions in a geometrical domain without considering the aspect of a non-geometrical domain. However, many application scenarios require clustering results in which a cluster has not only high proximity in a geometrical domain, but also high similarity in a non-geometrical domain. This means constraints are imposed on the clustering goal from both geometrical and non-geometrical domains simultaneously. Such a clustering problem is called dual clustering. As distributed clustering applications become more and more popular, it is necessary to tackle the dual clustering problem in distributed databases. The DCAD algorithm is proposed to solve this problem. DCAD consists of two levels of clustering: local clustering and global clustering. First, clustering is conducted at each local site with a local clustering algorithm, and the features of local clusters are extracted clustering is obtained based on those features fective and efficient. Second, local features from each site are sent to a central site where global Experiments on both artificial and real spatial datasets show that DCAD is effective and efficient. 展开更多
关键词 distributed clustering dual clustering distributed spatial database
下载PDF
Method and Application of Comprehensive Knowledge Discovery
5
作者 SHAZongyao BIANFuling 《Geo-Spatial Information Science》 2003年第3期48-55,共8页
This paper proposes the principle of comprehensive knowledge discovery. Unlike most of the current knowledge discovery methods, the comprehensive knowledge discovery considers both the spatial relations and attributes... This paper proposes the principle of comprehensive knowledge discovery. Unlike most of the current knowledge discovery methods, the comprehensive knowledge discovery considers both the spatial relations and attributes of spatial entities or objects. We introduce the theory of spatial knowledge expression system and some concepts including comprehensive knowledge discovery and spatial union information table (SUIT). In theory, SUIT records all information contained in the studied objects, but in reality, because of the complexity and varieties of spatial relations, only those factors of interest to us are selected. In order to find out the comprehensive knowledge from spatial databases, an efficient comprehensive knowledge discovery algorithm called recycled algorithm (RAR) is suggested. 展开更多
关键词 comprehensive knowledge discovery knowledge discovery algorithm spatialassociation rule knowledge expression system data mining
下载PDF
NEW METHOD OF MINING INCOMPLETE DATA
6
作者 Wang Lunwen Zhang Xianji +1 位作者 Wang Lunwu Zhang Lin 《Journal of Electronics(China)》 2013年第4期411-416,共6页
The data used in the process of knowledge discovery often includes noise and incomplete information. The boundaries of different classes of these data are blur and unobvious. When these data are clustered or classifie... The data used in the process of knowledge discovery often includes noise and incomplete information. The boundaries of different classes of these data are blur and unobvious. When these data are clustered or classified, we often get the coverings instead of the partitions, and it usually makes our information system insecure. In this paper, optimal partitioning of incomplete data is researched. Firstly, the relationship of set cover and set partition is discussed, and the distance between set cover and set partition is defined. Secondly, the optimal partitioning of given cover is researched by the combing and parting method, acquiring the optimal partition from three different partitions set family is discussed. Finally, the corresponding optimal algorithm is given. The real wireless signals offten contain a lot of noise, and there are many errors in boundaries when these data is clustered based on the tradional method. In our experimant, the proposed method improves correct rate greatly, and the experimental results demonstrate the method's validity. 展开更多
关键词 CLUSTERING Incomplete Information PARTITION Data Mining
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部