期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
TMGAT:类型匹配约束的图注意力网络
1
作者 孙首男 汪璟玢 +3 位作者 吴仁飞 游常凯 柯禧帆 黄皓 《计算机科学》 CSCD 北大核心 2024年第3期235-243,共9页
近年来利用图结构来解决知识图补全(KGC)问题取得了不错的进展,其中图神经网络(GNNs)通过聚合实体的局部邻域信息来不断更新中心实体的表示,图注意力网络(GATs)使用注意力机制有侧重地聚合邻居,以获得更准确的中心实体表示。这些模型虽... 近年来利用图结构来解决知识图补全(KGC)问题取得了不错的进展,其中图神经网络(GNNs)通过聚合实体的局部邻域信息来不断更新中心实体的表示,图注意力网络(GATs)使用注意力机制有侧重地聚合邻居,以获得更准确的中心实体表示。这些模型虽然在KGC中取得了不错的性能,但它们都忽略了中心实体的类型信息,仅仅使用邻域信息来计算注意力,将导致计算出来的注意力不够精准。针对这些问题,文中提出了一种类型匹配约束的图注意力网络(TMGAT),该方法通过计算中心实体类型对每个邻域关系的注意力,来得到实体类型-关系级别的注意力,以进一步计算出中心实体与各邻域关系的类型匹配度,再通过邻域关系及对应的邻居实体,结合类型匹配度计算实体-关系级别的注意力,得到邻域节点对中心实体的最终注意力。使用类型匹配度来约束传统的注意力机制,提升注意力机制的准确性,得到更加精准的中心实体嵌入,进而提升知识图补全的准确性。截至目前,文中提出的TMGAT是第一个在GATs中结合显式类型进行知识图补全任务的模型。文中加工了两个现有的数据集,使数据集中每个实体都拥有若干个类型,以验证TMGAT模型的性能。最后,实验部分展现了TMGAT在知识补全任务中优秀的竞争力,并研究了类型个数对模型性能的影响。 展开更多
关键词 知识 知识图补全 结构 注意力机制 类型信息
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部