期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于知识及流利度提升的中文语法纠错模型
1
作者 王岩 梁椰玲 《信息技术与信息化》 2024年第5期107-110,共4页
语法错误纠正(grammatical error correction,GEC)旨在将包含语法错误的句子纠正为正确的句子。目前语法错误纠正研究主要基于Transformer模型,但由于模型参数规模大,中文GEC任务语料不足,Transformer无法得到充分训练来学习文本中足够... 语法错误纠正(grammatical error correction,GEC)旨在将包含语法错误的句子纠正为正确的句子。目前语法错误纠正研究主要基于Transformer模型,但由于模型参数规模大,中文GEC任务语料不足,Transformer无法得到充分训练来学习文本中足够的语义信息。提出了基于知识及流利度提升策略的中文GEC模型,将MacBERT预训练模型作为外部知识来源,并利用流利度提升策略缓解GEC模型单轮推理纠错不完全的局限。为了验证所提出的GEC模型的有效性,在NLPCC 2018中文GEC共享任务数据集上进行了大量实验,其性能优于NLPCC 2018 GEC共享任务中开发的最佳模型。 展开更多
关键词 中文语法纠错 Transformer模型 知识增强学习 流利度提升策略 预训练语言模型
下载PDF
A special hierarchical fuzzy neural-networks based reinforcement learning for multi-variables system
2
作者 张文志 吕恬生 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第6期661-666,共6页
Proposes a reinforcement learning scheme based on a special Hierarchical Fuzzy Neural-Networks (HFNN)for solving complicated learning tasks in a continuous multi-variables environment. The output of the previous layer... Proposes a reinforcement learning scheme based on a special Hierarchical Fuzzy Neural-Networks (HFNN)for solving complicated learning tasks in a continuous multi-variables environment. The output of the previous layer in the HFNN is no longer used as if-part of the next layer, but used only in then-part. Thus it can deal with the difficulty when the output of the previous layer is meaningless or its meaning is uncertain. The proposed HFNN has a minimal number of fuzzy rules and can successfully solve the problem of rules combination explosion and decrease the quantity of computation and memory requirement. In the learning process, two HFNN with the same structure perform fuzzy action composition and evaluation function approximation simultaneously where the parameters of neural-networks are tuned and updated on line by using gradient descent algorithm. The reinforcement learning method is proved to be correct and feasible by simulation of a double inverted pendulum system. 展开更多
关键词 hierarchical fuzzy neural-networks reinforcement learning double inverted pendulum
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部