First-principle calculation was used to investigate the magnetic properties, electronic structure and bonding mechanism of FeF2. By calculating the lattice parameters and magnetic moment as a function of effective int...First-principle calculation was used to investigate the magnetic properties, electronic structure and bonding mechanism of FeF2. By calculating the lattice parameters and magnetic moment as a function of effective interaction parameter (Ueff), it is found that the optimum value of Uefr is equal to 4 eV, the magnetic moment is 3.752 μB and the value of c/a is 0.704, which are in good agreement with the experiment results. Simultaneously, on the basis of GGA+U method, the electronic structure and bonding mechanism of FeF2 were investigated by the analysis of electron localization function, Bader charge and total charge density. The results show that the bonding behavior between Fe and F atoms is a combination of ionic and covalent bond.展开更多
The geometrical structures of wurtzite CrX (X=As, Sb, O, Se, and Te) were optimized, then their electric and magnetic properties were investigated by the first-principle calculations within the generalized gradient ...The geometrical structures of wurtzite CrX (X=As, Sb, O, Se, and Te) were optimized, then their electric and magnetic properties were investigated by the first-principle calculations within the generalized gradient approximation for the exchange-correlation functional based on the density functional theory. These Cr-phosphides and Cr-sulphides were predicted to be half-metallic ferromagnets whose spin-polarization at the Fermi level is absolutely 100%. The molecular magnetic moments of Cr-phosphides and Cr-sulphides are 3.00 and 4.00 μB, which arise mainly from Cr-ions, respectively. There is ferromagnetic coupling in both Cr- phosphides and Cr-sulphides. The Curie temperatures of Cr-sulphides and Cr-phosphides are high. The electronic structures of Cr-ions are a1g^2↑↓t1u^4↑↓t1u^1↑↓eg^2↑↓in Cr-phosphides and a1g^2↑↓t1u^4↑↓t1u^1↑t2g^3↑in Cr-sulphides, respectively.展开更多
Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculat...Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculating the fluctuating components are put forward.Simulation and computation results show that the rotor winding faults will cause electromagnetictorque and rotating speed to fluctuate; and fluctuating frequencies are the same and their magnitudewill increase with the rise of the severity of the faults. The load inertia affects the torque andspeed fluctuation, with the increase of inertia, the fluctuation of the torque will rise, while thecorresponding speed fluctuation will obviously decline.展开更多
Improved waveguide designs for 9.0μm GaAs-based quantum cascade laser (QCL) structures are presented. Modal losses and confinement factors are calculated for TM modes with the transfer matrix method (TMM) and eff...Improved waveguide designs for 9.0μm GaAs-based quantum cascade laser (QCL) structures are presented. Modal losses and confinement factors are calculated for TM modes with the transfer matrix method (TMM) and effective index method (EIM). The thicknesses of the cladding layer and waveguide layer, the ridge-width, and the cavity length are all taken into account. Appropriate thicknesses of epilayers are given with lower threshold gain and more economical material growth time.展开更多
In this paper, based on the invariant subspace theory and adjoint operator concept of linear operator, a new matrix representation method is proposed to calculate the normal forms of n order general nonlinear dyna...In this paper, based on the invariant subspace theory and adjoint operator concept of linear operator, a new matrix representation method is proposed to calculate the normal forms of n order general nonlinear dynamic systems. In the method, there is no need to determine the structure of the class of normal forms in advance. Because the subspace is not related to the dimensions of the system and the order of the normal forms directly, it is determined only by a given vector field. So the normal forms with high orders and dimensions can be calculated by the method without difficulties. In this paper, is used the method for selecting the minimal subspace and solving homological equations in the subspace, the examples show that the method is very effective.展开更多
In this paper, the σ_duals of two classes important sequence spaces l 1(X) and l ∞(X) are investigated, and shows that some topology properties of locally convex space (X,τ) can be characterized by the σ _dua...In this paper, the σ_duals of two classes important sequence spaces l 1(X) and l ∞(X) are investigated, and shows that some topology properties of locally convex space (X,τ) can be characterized by the σ _duals. The criterions of bounded sets in l 1(X) and l ∞(X ) with respect to the weak topologies generated by the σ _duals are obtained. Furthermore, a Schur type result and an automatic continuity theorem of matrix transformation are established.展开更多
Doping is an effective way to improve the activity of photocatalysts.The effect of doping on the magnetic properties of some photocatalysts that are easily recycled was studied using the local spin density approximati...Doping is an effective way to improve the activity of photocatalysts.The effect of doping on the magnetic properties of some photocatalysts that are easily recycled was studied using the local spin density approximation(LSDA)+U method on typical divalent metal oxide semiconductors CuO,NiO,Ni‐doped CuO,and Cu‐doped NiO.It is found that the influence of Ni doping on the spatial structure of CuO and that of Cu doping on the spatial structure of NiO are negligible because of the similar radii of Ni2+and Cu2+.The valence band and conduction band for Ni‐doped CuO are clearly spin‐split,corresponding to a net effective magnetic moment ofμeff=1.66μB.This may improve the photocatalytic efficiency and raise the recycle rate of photocatalysts.In the Cu‐doped NiO system,the presence of Cu3d states near to the Fermi level increases the width of the valence band and narrows the band gap with respect to that in pure NiO.Beyond the Cu3d states,within the band gap,appear two energy levels around the Fermi level,which may effectively separate the electron‐hole pair and also lead to enhanced absorption of visible light and infrared light.It can be concluded that the observed changes in the band structure may be helpful for improving the activity of photocatalysts and the doped systems have net magnetic moments,meaning that they are easily recycled and can be reused.展开更多
The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonia...The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectie eigenfunction expansion method.展开更多
Applying the fermions tunneling method, proposed by Kerner and Mann recently, we discuss the tunneling characteristics of Dirac particles from the stationary Kaluza-Klein black hole. To choose Gamma matrix convenientl...Applying the fermions tunneling method, proposed by Kerner and Mann recently, we discuss the tunneling characteristics of Dirac particles from the stationary Kaluza-Klein black hole. To choose Gamma matrix conveniently and avoid the ergosphere dragging effect, we perform it in the dragging coordinate frame. The result shows that Hawking temperature in this case also can be reproduced by the general Dirac equation.展开更多
基金Foundation item: Project (20871101) supported by the National Natural Science Foundation of ChinaProject (09C945) supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘First-principle calculation was used to investigate the magnetic properties, electronic structure and bonding mechanism of FeF2. By calculating the lattice parameters and magnetic moment as a function of effective interaction parameter (Ueff), it is found that the optimum value of Uefr is equal to 4 eV, the magnetic moment is 3.752 μB and the value of c/a is 0.704, which are in good agreement with the experiment results. Simultaneously, on the basis of GGA+U method, the electronic structure and bonding mechanism of FeF2 were investigated by the analysis of electron localization function, Bader charge and total charge density. The results show that the bonding behavior between Fe and F atoms is a combination of ionic and covalent bond.
基金ACKNOWLEDGMENTS This work was supported by the Chongqing Natural Science Foundation (No.CSTC2007BB4391 and No.CSTC2008BB4083) and the Chongqing Science and Technology Foundation (No.kj060515 and No.kj080518)
文摘The geometrical structures of wurtzite CrX (X=As, Sb, O, Se, and Te) were optimized, then their electric and magnetic properties were investigated by the first-principle calculations within the generalized gradient approximation for the exchange-correlation functional based on the density functional theory. These Cr-phosphides and Cr-sulphides were predicted to be half-metallic ferromagnets whose spin-polarization at the Fermi level is absolutely 100%. The molecular magnetic moments of Cr-phosphides and Cr-sulphides are 3.00 and 4.00 μB, which arise mainly from Cr-ions, respectively. There is ferromagnetic coupling in both Cr- phosphides and Cr-sulphides. The Curie temperatures of Cr-sulphides and Cr-phosphides are high. The electronic structures of Cr-ions are a1g^2↑↓t1u^4↑↓t1u^1↑↓eg^2↑↓in Cr-phosphides and a1g^2↑↓t1u^4↑↓t1u^1↑t2g^3↑in Cr-sulphides, respectively.
文摘Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculating the fluctuating components are put forward.Simulation and computation results show that the rotor winding faults will cause electromagnetictorque and rotating speed to fluctuate; and fluctuating frequencies are the same and their magnitudewill increase with the rise of the severity of the faults. The load inertia affects the torque andspeed fluctuation, with the increase of inertia, the fluctuation of the torque will rise, while thecorresponding speed fluctuation will obviously decline.
文摘Improved waveguide designs for 9.0μm GaAs-based quantum cascade laser (QCL) structures are presented. Modal losses and confinement factors are calculated for TM modes with the transfer matrix method (TMM) and effective index method (EIM). The thicknesses of the cladding layer and waveguide layer, the ridge-width, and the cavity length are all taken into account. Appropriate thicknesses of epilayers are given with lower threshold gain and more economical material growth time.
文摘In this paper, based on the invariant subspace theory and adjoint operator concept of linear operator, a new matrix representation method is proposed to calculate the normal forms of n order general nonlinear dynamic systems. In the method, there is no need to determine the structure of the class of normal forms in advance. Because the subspace is not related to the dimensions of the system and the order of the normal forms directly, it is determined only by a given vector field. So the normal forms with high orders and dimensions can be calculated by the method without difficulties. In this paper, is used the method for selecting the minimal subspace and solving homological equations in the subspace, the examples show that the method is very effective.
文摘In this paper, the σ_duals of two classes important sequence spaces l 1(X) and l ∞(X) are investigated, and shows that some topology properties of locally convex space (X,τ) can be characterized by the σ _duals. The criterions of bounded sets in l 1(X) and l ∞(X ) with respect to the weak topologies generated by the σ _duals are obtained. Furthermore, a Schur type result and an automatic continuity theorem of matrix transformation are established.
基金supported by the National Natural Science Foundation of China(21377044,11304234,21573085)the Key Project of Natural Science Foundation of Hubei Province(2015CFA037)~~
文摘Doping is an effective way to improve the activity of photocatalysts.The effect of doping on the magnetic properties of some photocatalysts that are easily recycled was studied using the local spin density approximation(LSDA)+U method on typical divalent metal oxide semiconductors CuO,NiO,Ni‐doped CuO,and Cu‐doped NiO.It is found that the influence of Ni doping on the spatial structure of CuO and that of Cu doping on the spatial structure of NiO are negligible because of the similar radii of Ni2+and Cu2+.The valence band and conduction band for Ni‐doped CuO are clearly spin‐split,corresponding to a net effective magnetic moment ofμeff=1.66μB.This may improve the photocatalytic efficiency and raise the recycle rate of photocatalysts.In the Cu‐doped NiO system,the presence of Cu3d states near to the Fermi level increases the width of the valence band and narrows the band gap with respect to that in pure NiO.Beyond the Cu3d states,within the band gap,appear two energy levels around the Fermi level,which may effectively separate the electron‐hole pair and also lead to enhanced absorption of visible light and infrared light.It can be concluded that the observed changes in the band structure may be helpful for improving the activity of photocatalysts and the doped systems have net magnetic moments,meaning that they are easily recycled and can be reused.
基金Supported by the National Natural Science Foundation of China under Grant No.10962004the Natural Science Foundation of Inner Mongolia under Grant No.2009BS0101+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070126002the Cultivation of Innovative Talent of "211 Project"of Inner Mongolia University
文摘The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectie eigenfunction expansion method.
基金supported by the Natural Science Foundation of Sichuan Educational Office under Grant No.08ZA137
文摘Applying the fermions tunneling method, proposed by Kerner and Mann recently, we discuss the tunneling characteristics of Dirac particles from the stationary Kaluza-Klein black hole. To choose Gamma matrix conveniently and avoid the ergosphere dragging effect, we perform it in the dragging coordinate frame. The result shows that Hawking temperature in this case also can be reproduced by the general Dirac equation.