Finding the nearest volume-preserving matrix for a given matrix is studied. Amatrix equation is first obtained, which is a necessary condition for the solution to the problem.Then the equation is solved by the singula...Finding the nearest volume-preserving matrix for a given matrix is studied. Amatrix equation is first obtained, which is a necessary condition for the solution to the problem.Then the equation is solved by the singular value decomposition method. Some additional results arealso provided to further characterize the solution. Using these results, a numerical algorithm isintroduced and a numerical test is given to illustrate the effectiveness of the algorithm.展开更多
Sloshing of liquid can increase the dynamic pressure on the storage sidewalls and bottom in tanker ships and LNG careers. Different geometric shapes were suggested for storage tank to minimize the sloshing pressure on...Sloshing of liquid can increase the dynamic pressure on the storage sidewalls and bottom in tanker ships and LNG careers. Different geometric shapes were suggested for storage tank to minimize the sloshing pressure on tank perimeter. In this research, a numerical code was developed to model liquid sloshing in a rectangular partially filled tank. Assuming the fluid to be inviscid, Laplace equation and nonlinear free surface boundary conditions are solved using coupled FEM-BEM. The code performance for sloshing modeling is validated against available data. To minimize the sloshing pressure on tank perimeter, rectangular tanks with specific volumes and different aspect ratios were investigated and the best aspect ratios were suggested. The results showed that the rectangular tank with suggested aspect ratios, not only has a maximum surrounded tank volume to the constant available volume, but also reduces the sloshing pressure efficiently.展开更多
文摘Finding the nearest volume-preserving matrix for a given matrix is studied. Amatrix equation is first obtained, which is a necessary condition for the solution to the problem.Then the equation is solved by the singular value decomposition method. Some additional results arealso provided to further characterize the solution. Using these results, a numerical algorithm isintroduced and a numerical test is given to illustrate the effectiveness of the algorithm.
文摘Sloshing of liquid can increase the dynamic pressure on the storage sidewalls and bottom in tanker ships and LNG careers. Different geometric shapes were suggested for storage tank to minimize the sloshing pressure on tank perimeter. In this research, a numerical code was developed to model liquid sloshing in a rectangular partially filled tank. Assuming the fluid to be inviscid, Laplace equation and nonlinear free surface boundary conditions are solved using coupled FEM-BEM. The code performance for sloshing modeling is validated against available data. To minimize the sloshing pressure on tank perimeter, rectangular tanks with specific volumes and different aspect ratios were investigated and the best aspect ratios were suggested. The results showed that the rectangular tank with suggested aspect ratios, not only has a maximum surrounded tank volume to the constant available volume, but also reduces the sloshing pressure efficiently.