The authors present their analysis of the differential equation d X(t)/ d t = AX(t)-X T (t)BX(t)X(t) , where A is an unsymmetrical real matrix, B is a positive definite symmetric real matrix, X ∈...The authors present their analysis of the differential equation d X(t)/ d t = AX(t)-X T (t)BX(t)X(t) , where A is an unsymmetrical real matrix, B is a positive definite symmetric real matrix, X ∈R n; showing that the equation characterizes a class of continuous type full feedback artificial neural network; We give the analytic expression of the solution; discuss its asymptotic behavior; and finally present the result showing that, in almost all cases, one and only one of following cases is true. 1. For any initial value X 0∈R n, the solution approximates asymptotically to zero vector. In this case, the real part of each eigenvalue of A is non positive. 2. For any initial value X 0 outside a proper subspace of R n, the solution approximates asymptotically to a nontrivial constant vector (X 0) . In this case, the eigenvalue of A with maximal real part is the positive number λ=‖(X 0)‖ 2 B and (X 0) is the corresponding eigenvector. 3. For any initial value X 0 outside a proper subspace of R n, the solution approximates asymptotically to a non constant periodic function (X 0,t) . Then the eigenvalues of A with maximal real part is a pair of conjugate complex numbers which can be computed.展开更多
This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to...This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to study distribution system behavior under different operating conditions. Two-bus connected by asymmetrical line is used as the study system. The effects of both unbalance and extreme loading conditions are investigated. Also, the impact of distributed energy resources is studied. Different case studies and loading scenarios are presented to trace the eigenvalues of the Jacobian matrix. The results exhibit the existence of a new bifurcation point which may not be related to the voltage stability.展开更多
It has been extensively recognized that the engineering structures are becoming increasingly precise and complex,which makes the requirements of design and analysis more and more rigorous.Therefore the uncertainty eff...It has been extensively recognized that the engineering structures are becoming increasingly precise and complex,which makes the requirements of design and analysis more and more rigorous.Therefore the uncertainty effects are indispensable during the process of product development.Besides,iterative calculations,which are usually unaffordable in calculative efforts,are unavoidable if we want to achieve the best design.Taking uncertainty effects into consideration,matrix perturbation methodpermits quick sensitivity analysis and structural dynamic re-analysis,it can also overcome the difficulties in computational costs.Owing to the situations above,matrix perturbation method has been investigated by researchers worldwide recently.However,in the existing matrix perturbation methods,correlation coefficient matrix of random structural parameters,which is barely achievable in engineering practice,has to be given or to be assumed during the computational process.This has become the bottleneck of application for matrix perturbation method.In this paper,we aim to develop an executable approach,which contributes to the application of matrix perturbation method.In the present research,the first-order perturbation of structural vibration eigenvalues and eigenvectors is derived on the basis of the matrix perturbation theory when structural parameters such as stiffness and mass have changed.Combining the first-order perturbation of structural vibration eigenvalues and eigenvectors with the probability theory,the variance of structural random eigenvalue is derived from the perturbation of stiffness matrix,the perturbation of mass matrix and the eigenvector of baseline-structure directly.Hence the Direct-VarianceAnalysis(DVA)method is developed to assess the variation range of the structural random eigenvalues without correlation coefficient matrix being involved.The feasibility of the DVA method is verified with two numerical examples(one is trusssystem and the other is wing structure of MA700 commercial aircraft),in which the DVA method also shows superiority in computational efficiency when compared to the Monte-Carlo method.展开更多
The principal component analysis (PCA) is one of the most celebrated methods in analysing multivariate data. An effort of extending PCA is projection pursuit (PP), a more general class of dimension-reduction techn...The principal component analysis (PCA) is one of the most celebrated methods in analysing multivariate data. An effort of extending PCA is projection pursuit (PP), a more general class of dimension-reduction techniques. However, the application of this extended procedure is often hampered by its complexity in computation and by lack of some appropriate theory. In this paper, by use of the empirical processes we established a large sample theory for the robust PP estimators of the principal components and dispersion matrix.展开更多
In this paper, the authors derive the asymptotic joint distributions of theeigenvalues of some random matrices which arise from components of covariance model.
文摘The authors present their analysis of the differential equation d X(t)/ d t = AX(t)-X T (t)BX(t)X(t) , where A is an unsymmetrical real matrix, B is a positive definite symmetric real matrix, X ∈R n; showing that the equation characterizes a class of continuous type full feedback artificial neural network; We give the analytic expression of the solution; discuss its asymptotic behavior; and finally present the result showing that, in almost all cases, one and only one of following cases is true. 1. For any initial value X 0∈R n, the solution approximates asymptotically to zero vector. In this case, the real part of each eigenvalue of A is non positive. 2. For any initial value X 0 outside a proper subspace of R n, the solution approximates asymptotically to a nontrivial constant vector (X 0) . In this case, the eigenvalue of A with maximal real part is the positive number λ=‖(X 0)‖ 2 B and (X 0) is the corresponding eigenvector. 3. For any initial value X 0 outside a proper subspace of R n, the solution approximates asymptotically to a non constant periodic function (X 0,t) . Then the eigenvalues of A with maximal real part is a pair of conjugate complex numbers which can be computed.
文摘This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to study distribution system behavior under different operating conditions. Two-bus connected by asymmetrical line is used as the study system. The effects of both unbalance and extreme loading conditions are investigated. Also, the impact of distributed energy resources is studied. Different case studies and loading scenarios are presented to trace the eigenvalues of the Jacobian matrix. The results exhibit the existence of a new bifurcation point which may not be related to the voltage stability.
基金supported by the AVIC Research Project(Grant No.cxy2012BH07)the National Natural Science Foundation of China(Grant Nos.10872017,90816024,10876100)+1 种基金the Defense Industrial Technology Development Program(Grant Nos.A2120110001,B2120110011,A082013-2001)"111" Project(Grant No.B07009)
文摘It has been extensively recognized that the engineering structures are becoming increasingly precise and complex,which makes the requirements of design and analysis more and more rigorous.Therefore the uncertainty effects are indispensable during the process of product development.Besides,iterative calculations,which are usually unaffordable in calculative efforts,are unavoidable if we want to achieve the best design.Taking uncertainty effects into consideration,matrix perturbation methodpermits quick sensitivity analysis and structural dynamic re-analysis,it can also overcome the difficulties in computational costs.Owing to the situations above,matrix perturbation method has been investigated by researchers worldwide recently.However,in the existing matrix perturbation methods,correlation coefficient matrix of random structural parameters,which is barely achievable in engineering practice,has to be given or to be assumed during the computational process.This has become the bottleneck of application for matrix perturbation method.In this paper,we aim to develop an executable approach,which contributes to the application of matrix perturbation method.In the present research,the first-order perturbation of structural vibration eigenvalues and eigenvectors is derived on the basis of the matrix perturbation theory when structural parameters such as stiffness and mass have changed.Combining the first-order perturbation of structural vibration eigenvalues and eigenvectors with the probability theory,the variance of structural random eigenvalue is derived from the perturbation of stiffness matrix,the perturbation of mass matrix and the eigenvector of baseline-structure directly.Hence the Direct-VarianceAnalysis(DVA)method is developed to assess the variation range of the structural random eigenvalues without correlation coefficient matrix being involved.The feasibility of the DVA method is verified with two numerical examples(one is trusssystem and the other is wing structure of MA700 commercial aircraft),in which the DVA method also shows superiority in computational efficiency when compared to the Monte-Carlo method.
基金The researcb was partially supported by the National Natural Science Foundation of China under Grant No.19631040.
文摘The principal component analysis (PCA) is one of the most celebrated methods in analysing multivariate data. An effort of extending PCA is projection pursuit (PP), a more general class of dimension-reduction techniques. However, the application of this extended procedure is often hampered by its complexity in computation and by lack of some appropriate theory. In this paper, by use of the empirical processes we established a large sample theory for the robust PP estimators of the principal components and dispersion matrix.
文摘In this paper, the authors derive the asymptotic joint distributions of theeigenvalues of some random matrices which arise from components of covariance model.