This paper aims at developing a "local-global" approach for various types of finite dimensional algebras, especially those related to Hecke algebras. The eventual intention is to apply the methods and applic...This paper aims at developing a "local-global" approach for various types of finite dimensional algebras, especially those related to Hecke algebras. The eventual intention is to apply the methods and applications developed here to the cross-characteristic representation theory of finite groups of Lie type. We first review the notions of quasi-hereditary and stratified algebras over a Noetherian commutative ring. We prove that many global properties of these algebras hold if and only if they hold locally at every prime ideal. When the commutative ring is sufficiently good, it is often sufficient to check just the prime ideals of height at most one. These methods are applied to construct certain generalized q-Schur algebras, proving they are often quasi-hereditary(the "good" prime case) but always stratified. Finally, these results are used to prove a triangular decomposition matrix theorem for the modular representations of Hecke algebras at good primes. In the bad prime case, the generalized q-Schur algebras are at least stratified, and a block triangular analogue of the good prime case is proved, where the blocks correspond to Kazhdan-Lusztig cells.展开更多
We show that two module homomorphisms for groups and Lie algebras established by Xi(2012)can be generalized to the setting of quasi-triangular Hopf algebras.These module homomorphisms played a key role in his proof of...We show that two module homomorphisms for groups and Lie algebras established by Xi(2012)can be generalized to the setting of quasi-triangular Hopf algebras.These module homomorphisms played a key role in his proof of a conjecture of Yau(1998).They will also be useful in the problem of decomposition of tensor products of modules.Additionally,we give another generalization of result of Xi(2012)in terms of Chevalley-Eilenberg complex.展开更多
基金supported by a 2017 University of New South Wales Science Goldstar Grant(Jie Du)the Simons Foundation(Grant Nos. #359360(Brian Parshall) and #359363 (Leonard Scott))
文摘This paper aims at developing a "local-global" approach for various types of finite dimensional algebras, especially those related to Hecke algebras. The eventual intention is to apply the methods and applications developed here to the cross-characteristic representation theory of finite groups of Lie type. We first review the notions of quasi-hereditary and stratified algebras over a Noetherian commutative ring. We prove that many global properties of these algebras hold if and only if they hold locally at every prime ideal. When the commutative ring is sufficiently good, it is often sufficient to check just the prime ideals of height at most one. These methods are applied to construct certain generalized q-Schur algebras, proving they are often quasi-hereditary(the "good" prime case) but always stratified. Finally, these results are used to prove a triangular decomposition matrix theorem for the modular representations of Hecke algebras at good primes. In the bad prime case, the generalized q-Schur algebras are at least stratified, and a block triangular analogue of the good prime case is proved, where the blocks correspond to Kazhdan-Lusztig cells.
基金supported by National Natural Science Foundation of China (Grant No. 11501546)
文摘We show that two module homomorphisms for groups and Lie algebras established by Xi(2012)can be generalized to the setting of quasi-triangular Hopf algebras.These module homomorphisms played a key role in his proof of a conjecture of Yau(1998).They will also be useful in the problem of decomposition of tensor products of modules.Additionally,we give another generalization of result of Xi(2012)in terms of Chevalley-Eilenberg complex.