通过研究多输入多输出(Multiple input and multiple out,MIMO)雷达的角度估计算法,基于收发共址的十字阵MIMO雷达系统,将四元数理论应用到MIMO雷达角度中,提出了一种新的参数估计算法。通过构造四元数模型,结合增广矩阵束(Matrix enhan...通过研究多输入多输出(Multiple input and multiple out,MIMO)雷达的角度估计算法,基于收发共址的十字阵MIMO雷达系统,将四元数理论应用到MIMO雷达角度中,提出了一种新的参数估计算法。通过构造四元数模型,结合增广矩阵束(Matrix enhancement and matrix pencil,MEMP)方法构造增广矩阵,并证明该矩阵的秩等于目标总数,且不受目标相干性的影响,结合ESPRIT算法实现了对MIMO相干目标的角度估计。算法无需谱峰搜索,能够实现参数的自动配对,同时降低了运算复杂度。仿真实验进一步验证了算法的有效性。展开更多
基于增广矩阵束方法(Matrix Enhancement and Matrix Pencil,MEMP),以使用尽可能少的阵元逼近期望的方向图为目标,提出了一种求解阵元位置和设计激励幅度的新方法.首先对期望平面阵的方向图进行采样得到离散的数据集,再构造增广矩阵,对...基于增广矩阵束方法(Matrix Enhancement and Matrix Pencil,MEMP),以使用尽可能少的阵元逼近期望的方向图为目标,提出了一种求解阵元位置和设计激励幅度的新方法.首先对期望平面阵的方向图进行采样得到离散的数据集,再构造增广矩阵,对此增广矩阵进行奇异值分解(Singular Value Decomposition,SVD),确定逼近期望方向图所需的最小阵元数目;基于广义特征值分解求解两组特征值,并根据类基于旋转不变技术的信号参数估计(Estimating Signal Parameters Via RotationalInvariance Techniques,ESPRIT)对这两组特值配对;在最小二乘准则下求解稀布面阵的阵元位置和激励.仿真试验验证了该方法在稀布平面阵优化问题中的高效性和数值精度.展开更多
为提高支持向量机(support vector machine,SVM)的故障检测率,提出一种基于主元增广矩阵的SVM(SVM based on principal component augmented matrix,PCAM-SVM)故障检测方法.运用主元分析(principal component analysis,PCA)算法在主元...为提高支持向量机(support vector machine,SVM)的故障检测率,提出一种基于主元增广矩阵的SVM(SVM based on principal component augmented matrix,PCAM-SVM)故障检测方法.运用主元分析(principal component analysis,PCA)算法在主元空间中计算得分矩阵,再加入得分的时滞输入特性和时差输入特性,构建增广矩阵.运用正常数据和故障数据的增广矩阵训练SVM模型,获得判别分类函数,再运用SVM模型对测试数据进行分类.PCAM-SVM方法通过构建主元增广矩阵,增加模型输入特性复杂度,有效降低了数据自相关性,提高了SVM的故障检测性能.将该方法应用于多变量动态仿真案例和田纳西-伊斯曼过程,并与PCA、独立元分析(independent component analysis,ICA)、核主元分析(kernel principal component analysis,KPCA)、SVM和PCA-SVM方法比较,验证了PCAM-SVM方法的有效性.展开更多
文摘通过研究多输入多输出(Multiple input and multiple out,MIMO)雷达的角度估计算法,基于收发共址的十字阵MIMO雷达系统,将四元数理论应用到MIMO雷达角度中,提出了一种新的参数估计算法。通过构造四元数模型,结合增广矩阵束(Matrix enhancement and matrix pencil,MEMP)方法构造增广矩阵,并证明该矩阵的秩等于目标总数,且不受目标相干性的影响,结合ESPRIT算法实现了对MIMO相干目标的角度估计。算法无需谱峰搜索,能够实现参数的自动配对,同时降低了运算复杂度。仿真实验进一步验证了算法的有效性。
文摘基于增广矩阵束方法(Matrix Enhancement and Matrix Pencil,MEMP),以使用尽可能少的阵元逼近期望的方向图为目标,提出了一种求解阵元位置和设计激励幅度的新方法.首先对期望平面阵的方向图进行采样得到离散的数据集,再构造增广矩阵,对此增广矩阵进行奇异值分解(Singular Value Decomposition,SVD),确定逼近期望方向图所需的最小阵元数目;基于广义特征值分解求解两组特征值,并根据类基于旋转不变技术的信号参数估计(Estimating Signal Parameters Via RotationalInvariance Techniques,ESPRIT)对这两组特值配对;在最小二乘准则下求解稀布面阵的阵元位置和激励.仿真试验验证了该方法在稀布平面阵优化问题中的高效性和数值精度.
文摘为提高支持向量机(support vector machine,SVM)的故障检测率,提出一种基于主元增广矩阵的SVM(SVM based on principal component augmented matrix,PCAM-SVM)故障检测方法.运用主元分析(principal component analysis,PCA)算法在主元空间中计算得分矩阵,再加入得分的时滞输入特性和时差输入特性,构建增广矩阵.运用正常数据和故障数据的增广矩阵训练SVM模型,获得判别分类函数,再运用SVM模型对测试数据进行分类.PCAM-SVM方法通过构建主元增广矩阵,增加模型输入特性复杂度,有效降低了数据自相关性,提高了SVM的故障检测性能.将该方法应用于多变量动态仿真案例和田纳西-伊斯曼过程,并与PCA、独立元分析(independent component analysis,ICA)、核主元分析(kernel principal component analysis,KPCA)、SVM和PCA-SVM方法比较,验证了PCAM-SVM方法的有效性.