期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于残差图卷积深度网络的电网无功储备需求快速计算方法 被引量:2
1
作者 陈光宇 袁文辉 +2 位作者 徐晓春 戴则梅 闪鑫 《电工技术学报》 EI CSCD 北大核心 2023年第17期4683-4700,共18页
针对电网无功储备需求计算复杂度高、耗时长的问题,提出一种基于残差图卷积深度网络考虑冗余样本特征削减的电网无功储备需求快速计算方法。该文首先,给出一种基于深度学习的电网无功储备需求快速计算框架,采用残差图卷积深度神经网络(G... 针对电网无功储备需求计算复杂度高、耗时长的问题,提出一种基于残差图卷积深度网络考虑冗余样本特征削减的电网无功储备需求快速计算方法。该文首先,给出一种基于深度学习的电网无功储备需求快速计算框架,采用残差图卷积深度神经网络(GCNII)对电网无功储备需求计算进行建模;其次,为克服传统相似性计算方法在拓扑属性样本度量问题上的局限,提出一种双尺度相似性度量方法,基于矩阵奇异值序列的余弦距离实现对拓扑结构样本的相似性度量;最后,提出一种冗余样本削减策略,基于双尺度相似性度量方法,结合改进谱聚类算法实现对样本集合的分层聚类,并通过样本局部密度分析,实现在维持数据集特征多样性的情况下,对冗余样本进行有效削减,提升模型训练效率。所提算例采用IEEE标准节点系统进行仿真,计算结果表明,该方法能够实现在模型计算精度基本不变的情况下大幅提升模型训练效率。 展开更多
关键词 残差图卷积神经网络 无功储备需求计算 样本削减策略 矩阵奇异值序列 双尺度相似性
下载PDF
Wavelet matrix transform for time-series similarity measurement 被引量:2
2
作者 胡志坤 徐飞 +1 位作者 桂卫华 阳春华 《Journal of Central South University》 SCIE EI CAS 2009年第5期802-806,共5页
A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet... A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet subspace,and sample feature vector and orthogonal basics of sample time-series sequences were obtained by K-L transform. Then the inner product transform was carried out to project analyzed time-series sequence into orthogonal basics to gain analyzed feature vectors. The similarity was calculated between sample feature vector and analyzed feature vector by the Euclid distance. Taking fault wave of power electronic devices for example,the experimental results show that the proposed method has low dimension of feature vector,the anti-noise ability of proposed method is 30 times as large as that of plain wavelet method,the sensitivity of proposed method is 1/3 as large as that of plain wavelet method,and the accuracy of proposed method is higher than that of the wavelet singular value decomposition method. The proposed method can be applied in similarity matching and indexing for lager time series databases. 展开更多
关键词 wavelet transform singular value decomposition inner product transform time-series similarity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部