The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and th...The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.展开更多
We consider an Error-in-Variable partially linear model where the covariates of linear part are measured with error which follows a normal distribution with a known covariance matrix. We propose a corrected-loss estim...We consider an Error-in-Variable partially linear model where the covariates of linear part are measured with error which follows a normal distribution with a known covariance matrix. We propose a corrected-loss estimation of the covariate effect. The proposed estimator is asymptotically normal. Simulation studies are presented to show that the proposed method performs well with finite samples, and the proposed method is applied to a real data set.展开更多
基金The National Natural Science Foundation of China (No60574006)
文摘The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.
基金supported by National Natural Science Foundation of China(Grant Nos.10901020 and 11371062)the Fundamental Research Funds for the Central Universities,Beijing Center for Mathematics and Information Interdisciplinary Sciences,China Zhongdian Project(Grant No.11131002)
文摘We consider an Error-in-Variable partially linear model where the covariates of linear part are measured with error which follows a normal distribution with a known covariance matrix. We propose a corrected-loss estimation of the covariate effect. The proposed estimator is asymptotically normal. Simulation studies are presented to show that the proposed method performs well with finite samples, and the proposed method is applied to a real data set.