Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of...Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.展开更多
This present paper deals with a mathematical description of linear axial and torsional vibrations. The normal and tangential stress tensor components produced by axial-torsional deformations and vibrations in the prop...This present paper deals with a mathematical description of linear axial and torsional vibrations. The normal and tangential stress tensor components produced by axial-torsional deformations and vibrations in the propeller and intermediate shafts, under the influence of propeller-induced static and variable hydrodynamic excitations are also studied. The transfer matrix method related to the constant coefficients of differential equation solutions is used. The advantage of the latter as compared with a well-known method of transfer matrix associated with state vector is the possibility of reducing the number of multiplied matrices when adjacent shaft segments have the same material properties and diameters. The results show that there is no risk of buckling and confirm that the strength of the shaft line depends on the value of the static tangential stresses which is the most important component of the stress tensor.展开更多
The paper proposes a novel algorithm to get the encryption matrix. Firstly, a chaotic sequence generated by Chebyshev chaotic neural networks is converted into a series of low-order integer matrices from which availab...The paper proposes a novel algorithm to get the encryption matrix. Firstly, a chaotic sequence generated by Chebyshev chaotic neural networks is converted into a series of low-order integer matrices from which available encryption matrices are selected. Then, a higher order encryption matrix relating real world application is constructed by means of tensor production method based on selected encryption matrices. The results show that the proposed algorithm can produce a "one-time pad cipher" encryption matrix with high security; and the encryption results have good chaos and auto-correlation with the natural frequency of the plaintext being hidden and homogenized.展开更多
Based on a new discrete three-by-three matrix spectral problem, a hierarchy of integrable lattice equations with three potentials is proposed through discrete zero-curvature representation, and the resulting integrabl...Based on a new discrete three-by-three matrix spectral problem, a hierarchy of integrable lattice equations with three potentials is proposed through discrete zero-curvature representation, and the resulting integrable lattice equation reduces to the classical Toda lattice equation. It is shown that the hierarchy possesses a HamiItonian structure and a hereditary recursion operator. Finally, infinitely many conservation laws of corresponding lattice systems are obtained by a direct way.展开更多
The authors generalize the Cauchy matrix approach to get exact solutions to the lattice Boussinesq-type equations:lattice Boussinesq equation,lattice modified Boussinesq equation and lattice Schwarzian Boussinesq equa...The authors generalize the Cauchy matrix approach to get exact solutions to the lattice Boussinesq-type equations:lattice Boussinesq equation,lattice modified Boussinesq equation and lattice Schwarzian Boussinesq equation.Some kinds of solutions including soliton solutions,Jordan block solutions and mixed solutions are obtained.展开更多
Electrical property is an important problem in the field of natural science and physics, which usually involves potential, current and resistance in the electric circuit. We investigate the electrical properties of an...Electrical property is an important problem in the field of natural science and physics, which usually involves potential, current and resistance in the electric circuit. We investigate the electrical properties of an arbitrary hammock network, which has not been resolved before, and propose the exact potential formula of an arbitrary m × n hammock network by means of the Recursion-Transform method with current parameters(RT-I) pioneered by one of us [Z. Z. Tan, Phys. Rev. E 91(2015) 052122], and the branch currents and equivalent resistance of the network are derived naturally. Our key technique is to setting up matrix equations and making matrix transformation, the potential formula derived is a meaningful discovery, which deduces many novel applications. The discovery of potential formula of the hammock network provides new theoretical tools and techniques for related scientific research.展开更多
Two Darboux transformations of the(2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawaka(CDGKS)equation and(2+1)-dimensional modified Korteweg-de Vries(mKdV) equation are constructed through the Darboux matrix method...Two Darboux transformations of the(2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawaka(CDGKS)equation and(2+1)-dimensional modified Korteweg-de Vries(mKdV) equation are constructed through the Darboux matrix method, respectively. N-soliton solutions of these two equations are presented by applying the Darboux transformations N times. The right-going bright single-soliton solution and interactions of two and three-soliton overtaking collisions of the(2+1)-dimensional CDGKS equation are studied. By choosing different seed solutions, the right-going bright and left-going dark single-soliton solutions, the interactions of two and three-soliton overtaking collisions, and kink soliton solutions of the(2+1)-dimensional mKdV equation are investigated. The results can be used to illustrate the interactions of water waves in shallow water.展开更多
Quantum algorithms have been developed for efficiently solving linear algebra tasks.However,they generally require deep circuits and hence universal fault-tolerant quantum computers.In this work,we propose variational...Quantum algorithms have been developed for efficiently solving linear algebra tasks.However,they generally require deep circuits and hence universal fault-tolerant quantum computers.In this work,we propose variational algorithms for linear algebra tasks that are compatible with noisy intermediate-scale quantum devices.We show that the solutions of linear systems of equations and matrix–vector multiplications can be translated as the ground states of the constructed Hamiltonians.Based on the variational quantum algorithms,we introduce Hamiltonian morphing together with an adaptive ans?tz for efficiently finding the ground state,and show the solution verification.Our algorithms are especially suitable for linear algebra problems with sparse matrices,and have wide applications in machine learning and optimisation problems.The algorithm for matrix multiplications can be also used for Hamiltonian simulation and open system simulation.We evaluate the cost and effectiveness of our algorithm through numerical simulations for solving linear systems of equations.We implement the algorithm on the IBM quantum cloud device with a high solution fidelity of 99.95%.展开更多
A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. W...A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. With the Lanczos process the OAP creates a sequence of mutually orthogonal vectors, on the basis of which the projections of the unknown vectors are easily obtained, and thus the approximations to the unknown vectors can be simply constructed by a combination of these projections. This method is an application of the accumulated projection technique proposed recently by the authors of this paper, and can be regarded as a match of conjugate gradient method(CG) in its nature since both the CG and the OAP can be regarded as iterative methods, too. Unlike the CG method which can be only used to solve linear systems with symmetric positive definite coefficient matrices, the OAP can be used to handle systems with indefinite symmetric matrices. Unlike classical Krylov subspace methods which usually ignore the issue of loss of orthogonality, OAP uses an effective approach to detect the loss of orthogonality and a restart strategy is used to handle the loss of orthogonality.Numerical experiments are presented to demonstrate the efficiency of the OAP.展开更多
When femtosecond (fs) timeresolved experiments are used to study ultrafast processes, quantum beat phenomena are often observed. In this paper, to analyze the fs timeresolved spectra, we will present the density mat...When femtosecond (fs) timeresolved experiments are used to study ultrafast processes, quantum beat phenomena are often observed. In this paper, to analyze the fs timeresolved spectra, we will present the density matrix method, a powerful theoretical technique, which describes the dynamics of population and coherence of the system. How to employ it to study the pumpprobe experiments and fs ultrafast processes is described. The transition of pyrazine is used as an example to demonstrate the application of the density matrix method. Recently, Suzuki's group have employed the 22 fs time resolution laser to study the dynamics of the state of pyrazine. In this case, conical intersection is commonly believed to play an important role in this nonadiabatic process. How to treat the effect of conical intersection on nonadiabatic processes and fs timeresolved spectra is presented. Another important ultrafast process, vibrational relaxation, which takes place in subps and ps range and has never been carefully studied, is treated in this paper. The vibrational relaxation in water dimer is chosen to demonstrate the calculation. It should be noted that the vibrational relaxation of (H20)2 has not been experimentally studied but it can be accomplished by the pump-probe experiments.展开更多
基金Supported by the National Natural Science Foundation of China(12001395)the special fund for Science and Technology Innovation Teams of Shanxi Province(202204051002018)+1 种基金Research Project Supported by Shanxi Scholarship Council of China(2022-169)Graduate Education Innovation Project of Taiyuan Normal University(SYYJSYC-2314)。
文摘Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.
文摘This present paper deals with a mathematical description of linear axial and torsional vibrations. The normal and tangential stress tensor components produced by axial-torsional deformations and vibrations in the propeller and intermediate shafts, under the influence of propeller-induced static and variable hydrodynamic excitations are also studied. The transfer matrix method related to the constant coefficients of differential equation solutions is used. The advantage of the latter as compared with a well-known method of transfer matrix associated with state vector is the possibility of reducing the number of multiplied matrices when adjacent shaft segments have the same material properties and diameters. The results show that there is no risk of buckling and confirm that the strength of the shaft line depends on the value of the static tangential stresses which is the most important component of the stress tensor.
基金Supported by the National Natural Science Foundation of China (No. 61173036)
文摘The paper proposes a novel algorithm to get the encryption matrix. Firstly, a chaotic sequence generated by Chebyshev chaotic neural networks is converted into a series of low-order integer matrices from which available encryption matrices are selected. Then, a higher order encryption matrix relating real world application is constructed by means of tensor production method based on selected encryption matrices. The results show that the proposed algorithm can produce a "one-time pad cipher" encryption matrix with high security; and the encryption results have good chaos and auto-correlation with the natural frequency of the plaintext being hidden and homogenized.
基金Supported by the Science and Technology Plan Project of the Educational Department of Shandong Province of China under Grant No.J09LA54the Research Project of"SUST Spring Bud"of Shandong University of Science and Technology of China under Grant No.2009AZZ071
文摘Based on a new discrete three-by-three matrix spectral problem, a hierarchy of integrable lattice equations with three potentials is proposed through discrete zero-curvature representation, and the resulting integrable lattice equation reduces to the classical Toda lattice equation. It is shown that the hierarchy possesses a HamiItonian structure and a hereditary recursion operator. Finally, infinitely many conservation laws of corresponding lattice systems are obtained by a direct way.
基金Project supported by the National Natural Science Foundation of China (No.11071157)the Shanghai Leading Academic Discipline Project (No.J50101)the Postgraduate Innovation Foundation of Shanghai University (No.SHUCX111027)
文摘The authors generalize the Cauchy matrix approach to get exact solutions to the lattice Boussinesq-type equations:lattice Boussinesq equation,lattice modified Boussinesq equation and lattice Schwarzian Boussinesq equation.Some kinds of solutions including soliton solutions,Jordan block solutions and mixed solutions are obtained.
基金Supported by the Natural Science Foundation of Jiangsu Province under Grant No.BK20161278
文摘Electrical property is an important problem in the field of natural science and physics, which usually involves potential, current and resistance in the electric circuit. We investigate the electrical properties of an arbitrary hammock network, which has not been resolved before, and propose the exact potential formula of an arbitrary m × n hammock network by means of the Recursion-Transform method with current parameters(RT-I) pioneered by one of us [Z. Z. Tan, Phys. Rev. E 91(2015) 052122], and the branch currents and equivalent resistance of the network are derived naturally. Our key technique is to setting up matrix equations and making matrix transformation, the potential formula derived is a meaningful discovery, which deduces many novel applications. The discovery of potential formula of the hammock network provides new theoretical tools and techniques for related scientific research.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11075055,11275072Innovative Research Team Program of the National Science Foundation of China under Grant No.61021104+3 种基金National High Technology Research and Development Program under Grant No.2011AA010101Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No.ZF1213Talent FundK.C.Wong Magna Fund in Ningbo University
文摘Two Darboux transformations of the(2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawaka(CDGKS)equation and(2+1)-dimensional modified Korteweg-de Vries(mKdV) equation are constructed through the Darboux matrix method, respectively. N-soliton solutions of these two equations are presented by applying the Darboux transformations N times. The right-going bright single-soliton solution and interactions of two and three-soliton overtaking collisions of the(2+1)-dimensional CDGKS equation are studied. By choosing different seed solutions, the right-going bright and left-going dark single-soliton solutions, the interactions of two and three-soliton overtaking collisions, and kink soliton solutions of the(2+1)-dimensional mKdV equation are investigated. The results can be used to illustrate the interactions of water waves in shallow water.
基金the Engineering and Physical Sciences Research Council National Quantum Technology Hub in Networked Quantum Information Technology(EP/M013243/1)Japan Student Services Organization(JASSO)Student Exchange Support Program(Graduate Scholarship for Degree Seeking Students)+1 种基金the National Natural Science Foundation of China(U1730449)the European Quantum Technology Flagship project AQTION。
文摘Quantum algorithms have been developed for efficiently solving linear algebra tasks.However,they generally require deep circuits and hence universal fault-tolerant quantum computers.In this work,we propose variational algorithms for linear algebra tasks that are compatible with noisy intermediate-scale quantum devices.We show that the solutions of linear systems of equations and matrix–vector multiplications can be translated as the ground states of the constructed Hamiltonians.Based on the variational quantum algorithms,we introduce Hamiltonian morphing together with an adaptive ans?tz for efficiently finding the ground state,and show the solution verification.Our algorithms are especially suitable for linear algebra problems with sparse matrices,and have wide applications in machine learning and optimisation problems.The algorithm for matrix multiplications can be also used for Hamiltonian simulation and open system simulation.We evaluate the cost and effectiveness of our algorithm through numerical simulations for solving linear systems of equations.We implement the algorithm on the IBM quantum cloud device with a high solution fidelity of 99.95%.
基金supported by National Natural Science Foundation of China (Grant Nos. 91430108 and 11171251)the Major Program of Tianjin University of Finance and Economics (Grant No. ZD1302)
文摘A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. With the Lanczos process the OAP creates a sequence of mutually orthogonal vectors, on the basis of which the projections of the unknown vectors are easily obtained, and thus the approximations to the unknown vectors can be simply constructed by a combination of these projections. This method is an application of the accumulated projection technique proposed recently by the authors of this paper, and can be regarded as a match of conjugate gradient method(CG) in its nature since both the CG and the OAP can be regarded as iterative methods, too. Unlike the CG method which can be only used to solve linear systems with symmetric positive definite coefficient matrices, the OAP can be used to handle systems with indefinite symmetric matrices. Unlike classical Krylov subspace methods which usually ignore the issue of loss of orthogonality, OAP uses an effective approach to detect the loss of orthogonality and a restart strategy is used to handle the loss of orthogonality.Numerical experiments are presented to demonstrate the efficiency of the OAP.
文摘When femtosecond (fs) timeresolved experiments are used to study ultrafast processes, quantum beat phenomena are often observed. In this paper, to analyze the fs timeresolved spectra, we will present the density matrix method, a powerful theoretical technique, which describes the dynamics of population and coherence of the system. How to employ it to study the pumpprobe experiments and fs ultrafast processes is described. The transition of pyrazine is used as an example to demonstrate the application of the density matrix method. Recently, Suzuki's group have employed the 22 fs time resolution laser to study the dynamics of the state of pyrazine. In this case, conical intersection is commonly believed to play an important role in this nonadiabatic process. How to treat the effect of conical intersection on nonadiabatic processes and fs timeresolved spectra is presented. Another important ultrafast process, vibrational relaxation, which takes place in subps and ps range and has never been carefully studied, is treated in this paper. The vibrational relaxation in water dimer is chosen to demonstrate the calculation. It should be noted that the vibrational relaxation of (H20)2 has not been experimentally studied but it can be accomplished by the pump-probe experiments.