期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
低秩稀疏重建分析的边缘检测方法 被引量:2
1
作者 刘军 宋维琪 +3 位作者 陈俊安 谭明 胡建林 董林 《石油地球物理勘探》 EI CSCD 北大核心 2021年第6期1322-1329,I0005,I0006,共10页
边缘检测方法众多,并取得了很好的应用效果,但不同方法有其自身的不足和边缘检测能力的限制,特别是对噪声干扰、多边缘干涉及弱小目标边缘的检测效果不理想。为此,首先分析断层边缘和缝洞边缘的空间分布特征,根据断层边缘和缝洞边缘的... 边缘检测方法众多,并取得了很好的应用效果,但不同方法有其自身的不足和边缘检测能力的限制,特别是对噪声干扰、多边缘干涉及弱小目标边缘的检测效果不理想。为此,首先分析断层边缘和缝洞边缘的空间分布特征,根据断层边缘和缝洞边缘的地震响应特征,把低秩稀疏分析理论引入边缘检测,研究边缘信息、背景信息及噪声信息的低秩稀疏分解与重建;为了提高边缘检测能力和分辨率,在压缩感知稀疏表示基础上,对地震资料进行深度稀疏化表示,结合向量稀疏表示和矩阵稀疏表示,通过低秩稀疏分析理论,形成一种全新的边缘检测方法——低秩稀疏重建分析的边缘检测方法。具体步骤为:(1)地震资料平稳小波分解;(2)多尺度小波系数优化;(3)根据多尺度优化小波系数建立张量矩阵并进行建模;(4)张量矩阵奇异值分解;(5)矩阵奇异值低秩优化;(6)多尺度双稀疏和双优化结果融合与重建。模型分析和实际资料应用效果分析表明:所提方法的抗噪性、适用性较强,对于断层和缝洞边缘具有较好的刻画能力。 展开更多
关键词 多尺度分解 低秩稀疏分析 向量稀疏表示 矩阵稀疏表示 边缘检测
下载PDF
Alzheimer’s disease classification based on sparse functional connectivity and non-negative matrix factorization
2
作者 Li Xuan Lu Xuesong Wang Haixian 《Journal of Southeast University(English Edition)》 EI CAS 2019年第2期147-152,共6页
A novel framework is proposed to obtain physiologically meaningful features for Alzheimer's disease(AD)classification based on sparse functional connectivity and non-negative matrix factorization.Specifically,the ... A novel framework is proposed to obtain physiologically meaningful features for Alzheimer's disease(AD)classification based on sparse functional connectivity and non-negative matrix factorization.Specifically,the non-negative adaptive sparse representation(NASR)method is applied to compute the sparse functional connectivity among brain regions based on functional magnetic resonance imaging(fMRI)data for feature extraction.Afterwards,the sparse non-negative matrix factorization(sNMF)method is adopted for dimensionality reduction to obtain low-dimensional features with straightforward physical meaning.The experimental results show that the proposed framework outperforms the competing frameworks in terms of classification accuracy,sensitivity and specificity.Furthermore,three sub-networks,including the default mode network,the basal ganglia-thalamus-limbic network and the temporal-insular network,are found to have notable differences between the AD patients and the healthy subjects.The proposed framework can effectively identify AD patients and has potentials for extending the understanding of the pathological changes of AD. 展开更多
关键词 Alzheimer's disease sparse representation non-negative matrix factorization functional connectivity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部