The magnetic reversal mechanism has been determined within a micromagnetic model reliably for a two-phased magnetic nanosystem, with the formulae for nucleation fields derived analytically. It is found that the nuclea...The magnetic reversal mechanism has been determined within a micromagnetic model reliably for a two-phased magnetic nanosystem, with the formulae for nucleation fields derived analytically. It is found that the nucleation field HN decreases uni- formly as the size of the soft phase Ls increases whereas it increases with the size of the hard phase Lh. The analysis shows that whilst the effect of Lh could be ignored in most cases, where the nucleation field is dominated by the Ls and the calculation could be significantly simplified, the overly simple inverse square law between Hu and the soft layer thickness Ls adopted by the previous researchers is not a good approximation. While nucleation is the beginning of the magnetic reversal, pinning is the dominant coercivity mechanism in both two-phased and single-phased magnetic materials, where the crystalline defects exist. Comparison with the experimental data confirms this conclusion, indicating that Brown's paradox results from the much lower effective anisotropy in both single-phased and composite materials, as speculated in the literature.展开更多
By analyzing causes, damages and popular solutions for gnawing rail phenomenon of Rail-Mounted Gantry (shorted for RMG), this article puts forward a kind of automatic correcting control system, the system can change...By analyzing causes, damages and popular solutions for gnawing rail phenomenon of Rail-Mounted Gantry (shorted for RMG), this article puts forward a kind of automatic correcting control system, the system can change between two transducer connection forms, and as a result, can prevent or decrease gnawing rail problem to a great extent. We present principles of correcting obliquity, sideward displacement of gantry frame and principles of malfunction diagnosis and some important schematic diagrams. The most significant feature of our system is that we can change transducers' connection form to respective or cross driving mode according to the extent of obliquity and sideward displacement of gantry frame, which make full use of both modes' advantages. As a result, the system not only can minish gnawing rail phenomenon, diagnose causes of gnawing rail and give an corresponding alarm, but also, in cross connection driving mode, has an unique capacity of preventing gnawing rail phenomenon utilizing its own characteristics under cross connection mode and gantry frame's rigidity.展开更多
Metallic implants are commonly used in various orthopaedic surgeries, like fracture fixation, spinal instrumentation, joint replacement and bone tumour surgery.Patients may need to adapt to the fixed dimensions of the...Metallic implants are commonly used in various orthopaedic surgeries, like fracture fixation, spinal instrumentation, joint replacement and bone tumour surgery.Patients may need to adapt to the fixed dimensions of the standard implants. It may result in suboptimal fit to the host bones and possible adverse clinical results. The standard traditional implants may not address the reconstructive challenges such as severe bone deformity or bone loss after implant loosening and bone tumour resection. With the advent of digital technologies in medical imaging, computer programming in three-dimensional(3 D) modelling and computer-assisted tools in precise placement of implants, patient-specific implants(PSI) have gained more attention in complex orthopaedic reconstruction. Additive manufacturing technology, in contrast to the conventional subtractive manufacturing, is a flexible process that can fabricate anatomically conforming implants that match the patients’ anatomy and surgical requirements. Complex internal structures with porous scaffold can also be built to enhance osseointegration for better implant longevity. Although basic studies have suggested that additive manufactured(AM) metal structures are good engineered biomaterials for bone replacement, not much peer-reviewed literature is available on the clinical results of the new types of implants. The article gives an overview of the metallic materials commonly used for fabricating orthopaedic implants, describes the metal-based additive manufacturing technology and the processing chain in metallic implants; discusses the features of AM implants;reports the current status in orthopaedic surgical applications and comments on the challenges of AM implants in orthopaedic practice.展开更多
基金support from the National Natural Science Foundation of China (Grant Nos. 10747007 and 11074179)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Ministry of Education
文摘The magnetic reversal mechanism has been determined within a micromagnetic model reliably for a two-phased magnetic nanosystem, with the formulae for nucleation fields derived analytically. It is found that the nucleation field HN decreases uni- formly as the size of the soft phase Ls increases whereas it increases with the size of the hard phase Lh. The analysis shows that whilst the effect of Lh could be ignored in most cases, where the nucleation field is dominated by the Ls and the calculation could be significantly simplified, the overly simple inverse square law between Hu and the soft layer thickness Ls adopted by the previous researchers is not a good approximation. While nucleation is the beginning of the magnetic reversal, pinning is the dominant coercivity mechanism in both two-phased and single-phased magnetic materials, where the crystalline defects exist. Comparison with the experimental data confirms this conclusion, indicating that Brown's paradox results from the much lower effective anisotropy in both single-phased and composite materials, as speculated in the literature.
文摘By analyzing causes, damages and popular solutions for gnawing rail phenomenon of Rail-Mounted Gantry (shorted for RMG), this article puts forward a kind of automatic correcting control system, the system can change between two transducer connection forms, and as a result, can prevent or decrease gnawing rail problem to a great extent. We present principles of correcting obliquity, sideward displacement of gantry frame and principles of malfunction diagnosis and some important schematic diagrams. The most significant feature of our system is that we can change transducers' connection form to respective or cross driving mode according to the extent of obliquity and sideward displacement of gantry frame, which make full use of both modes' advantages. As a result, the system not only can minish gnawing rail phenomenon, diagnose causes of gnawing rail and give an corresponding alarm, but also, in cross connection driving mode, has an unique capacity of preventing gnawing rail phenomenon utilizing its own characteristics under cross connection mode and gantry frame's rigidity.
文摘Metallic implants are commonly used in various orthopaedic surgeries, like fracture fixation, spinal instrumentation, joint replacement and bone tumour surgery.Patients may need to adapt to the fixed dimensions of the standard implants. It may result in suboptimal fit to the host bones and possible adverse clinical results. The standard traditional implants may not address the reconstructive challenges such as severe bone deformity or bone loss after implant loosening and bone tumour resection. With the advent of digital technologies in medical imaging, computer programming in three-dimensional(3 D) modelling and computer-assisted tools in precise placement of implants, patient-specific implants(PSI) have gained more attention in complex orthopaedic reconstruction. Additive manufacturing technology, in contrast to the conventional subtractive manufacturing, is a flexible process that can fabricate anatomically conforming implants that match the patients’ anatomy and surgical requirements. Complex internal structures with porous scaffold can also be built to enhance osseointegration for better implant longevity. Although basic studies have suggested that additive manufactured(AM) metal structures are good engineered biomaterials for bone replacement, not much peer-reviewed literature is available on the clinical results of the new types of implants. The article gives an overview of the metallic materials commonly used for fabricating orthopaedic implants, describes the metal-based additive manufacturing technology and the processing chain in metallic implants; discusses the features of AM implants;reports the current status in orthopaedic surgical applications and comments on the challenges of AM implants in orthopaedic practice.