期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
可变时长的短时广播语音多语种识别
被引量:
2
1
作者
王瑶
龙华
+1 位作者
邵玉斌
杜庆治
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第3期490-496,共7页
针对短时语音时长过短以及训练语音和测试语音时长不等,导致语种识别性能大幅度下降的问题,提出了一种可变时长的短时广播语音多语种识别模型(Variable Duration-Language Identification,VD-LID).首先,对不同时长的语音进行时长规整;然...
针对短时语音时长过短以及训练语音和测试语音时长不等,导致语种识别性能大幅度下降的问题,提出了一种可变时长的短时广播语音多语种识别模型(Variable Duration-Language Identification,VD-LID).首先,对不同时长的语音进行时长规整;然后,对规整后的短时语音进行特征提取,提取其对数功率谱包络图作为语种特征;最后,将语种特征输入到残差神经网络中进行分类.实验结果表明,相比于传统特征输入,对数功率谱包络图特征将短时语音的语种识别准确率提高到了82.4%;相比于没有引入时长规整层的语种识别模型,VD-LID在测试语音时长为5 s和10 s的实验中,语种识别准确率分别提升了27.9%和37.7%.
展开更多
关键词
短时语种识别
对数功率谱包络图
残差神经网络
时长规整层
下载PDF
职称材料
题名
可变时长的短时广播语音多语种识别
被引量:
2
1
作者
王瑶
龙华
邵玉斌
杜庆治
机构
昆明理工大学信息工程与自动化学院
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第3期490-496,共7页
基金
国家自然科学基金(61761025).
文摘
针对短时语音时长过短以及训练语音和测试语音时长不等,导致语种识别性能大幅度下降的问题,提出了一种可变时长的短时广播语音多语种识别模型(Variable Duration-Language Identification,VD-LID).首先,对不同时长的语音进行时长规整;然后,对规整后的短时语音进行特征提取,提取其对数功率谱包络图作为语种特征;最后,将语种特征输入到残差神经网络中进行分类.实验结果表明,相比于传统特征输入,对数功率谱包络图特征将短时语音的语种识别准确率提高到了82.4%;相比于没有引入时长规整层的语种识别模型,VD-LID在测试语音时长为5 s和10 s的实验中,语种识别准确率分别提升了27.9%和37.7%.
关键词
短时语种识别
对数功率谱包络图
残差神经网络
时长规整层
Keywords
short-term language recognition
logarithmic power spectrum envelope map
residual neural network
duration regulation layer
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
可变时长的短时广播语音多语种识别
王瑶
龙华
邵玉斌
杜庆治
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2022
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部