期刊文献+
共找到36,848篇文章
< 1 2 250 >
每页显示 20 50 100
影响汇率变动的短期因素 被引量:1
1
作者 张衍清 《商业研究》 北大核心 2002年第6期14-14,共1页
汇率是两个国家货币之间的比率、比价或价格,它以两国纸币的金平价为基础。从长期看,外汇的价格是由外汇市场上的供求关系决定的。但从短期看,外汇的现货价格与外汇的长期均衡价格发生背离,造成外汇行市波动的短期因素是多方面的,既有... 汇率是两个国家货币之间的比率、比价或价格,它以两国纸币的金平价为基础。从长期看,外汇的价格是由外汇市场上的供求关系决定的。但从短期看,外汇的现货价格与外汇的长期均衡价格发生背离,造成外汇行市波动的短期因素是多方面的,既有经济因素,也有政治因素,还有心理因素,只有认清它的短期波动规律,才能在外汇市场立于不败之地。 展开更多
关键词 汇率变动 短期因 波动规律 外汇市场 国际收支 通货膨胀率 心理预期
下载PDF
当前低水平过剩的短期因素分析
2
作者 文启湘 石奇 《经济研究参考》 1999年第75期12-13,共2页
人们对形成当前低水平过剩局面的短期因素的认识可以集中概括为两种: 第一种认识,把低水平过剩的形成主要归因于经济运行的实体层面。这种观点认为,改革开放以来,我国的企业逐步形成了高负债经营的格局,我国企业负债率平均高达70%~80... 人们对形成当前低水平过剩局面的短期因素的认识可以集中概括为两种: 第一种认识,把低水平过剩的形成主要归因于经济运行的实体层面。这种观点认为,改革开放以来,我国的企业逐步形成了高负债经营的格局,我国企业负债率平均高达70%~80%。在良好的投资回报率引诱下。 展开更多
关键词 低水平过剩 短期因 中央银行 短期分析 金融机构 高负债经营 体层 国债发行 机关事业单位 归因
下载PDF
长短期因素共同作用于国际油价
3
作者 张红梅 《中国石油和化工》 2007年第21期28-31,共4页
分析影响国际石油价格波动的因素,对减轻价格波动对国际石油市场乃至整个世界经济的冲击,有着非常深远的意义。
关键词 国际油价 共同作用 国际石油市场 短期 价格波动 世界经济
下载PDF
基于CNN-SAEDN-Res的短期电力负荷预测方法 被引量:4
4
作者 崔杨 朱晗 +2 位作者 王议坚 张璐 李扬 《电力自动化设备》 EI CSCD 北大核心 2024年第4期164-170,共7页
基于深度学习的序列模型难以处理混有非时序因素的负荷数据,这导致预测精度不足。提出一种基于卷积神经网络(CNN)、自注意力编码解码网络(SAEDN)和残差优化(Res)的短期电力负荷预测方法。特征提取模块由二维卷积神经网络组成,用于挖掘... 基于深度学习的序列模型难以处理混有非时序因素的负荷数据,这导致预测精度不足。提出一种基于卷积神经网络(CNN)、自注意力编码解码网络(SAEDN)和残差优化(Res)的短期电力负荷预测方法。特征提取模块由二维卷积神经网络组成,用于挖掘数据间的局部相关性,获取高维特征。初始负荷预测模块由自注意力编码解码网络和前馈神经网络构成,利用自注意力机制对高维特征进行自注意力编码,获取数据间的全局相关性,从而模型能根据数据间的耦合关系保留混有非时序因素数据中的重要信息,通过解码模块进行自注意力解码,并利用前馈神经网络回归初始负荷。引入残差机制构建负荷优化模块,生成负荷残差,优化初始负荷。算例结果表明,所提方法在预测精度和预测稳定性方面具有优势。 展开更多
关键词 短期电力负荷预测 卷积神经网络 自注意力机制 残差机制 负荷优化
下载PDF
术后24 h内血清降钙素原水平对肺移植术后短期结局的预测价值 被引量:1
5
作者 王慧敏 王鑫 +4 位作者 赵丽丽 朱金霞 李晓莉 冯敏 郭铁 《郑州大学学报(医学版)》 CAS 北大核心 2024年第1期133-135,共3页
目的:探讨术后24 h内血清降钙素原(PCT)水平对肺移植术后短期结局的预测价值。方法:回顾性分析2021年1月至2022年6月于郑州大学第一附属医院行肺移植术患者的资料,检测术后24 h内血清PCT水平。术后6个月内死亡30例,存活49例。结果:死亡... 目的:探讨术后24 h内血清降钙素原(PCT)水平对肺移植术后短期结局的预测价值。方法:回顾性分析2021年1月至2022年6月于郑州大学第一附属医院行肺移植术患者的资料,检测术后24 h内血清PCT水平。术后6个月内死亡30例,存活49例。结果:死亡组术后24 h内血清PCT水平1.330(0.384,7.225)ng/mL高于存活组0.430(0.135,1.185)ng/mL(P<0.05)。Logistic回归分析结果显示,术后24 h内血清PCT水平升高的肺移植患者术后6个月内死亡风险增加,OR(95%CI)为1.416(1.126~1.781)。术后24 h内血清PCT水平预测肺移植术后6个月内死亡的ROC曲线,AUC(95%CI)为0.711(0.587~0.835)。结论:术后24 h内血清PCT水平对肺移植术后短期结局具有一定的预测价值。 展开更多
关键词 肺移植 降钙素原 短期结局
下载PDF
基于多维气象信息时空融合和MPA-VMD的短期电力负荷组合预测模型 被引量:1
6
作者 王凌云 周翔 +2 位作者 田恬 杨波 李世春 《电力自动化设备》 EI CSCD 北大核心 2024年第2期190-197,共8页
为提高电力负荷预测精度,需考虑区域内不同地区多维气象信息对电力负荷影响的差异性。在空间维度上,提出多维气象信息时空融合的方法,利用Copula理论将多座气象站的风速、降雨量、温度、日照强度等气象信息与电力负荷进行非线性耦合分... 为提高电力负荷预测精度,需考虑区域内不同地区多维气象信息对电力负荷影响的差异性。在空间维度上,提出多维气象信息时空融合的方法,利用Copula理论将多座气象站的风速、降雨量、温度、日照强度等气象信息与电力负荷进行非线性耦合分析并实现时空融合。在时间维度上,采用海洋捕食者算法(MPA)实现变分模态分解(VMD)核心参数的自动寻优,并采用加权排列熵构造MPA-VMD适应度函数,实现负荷序列的自适应分解。通过将时间维度各分量与空间维度各气象信息进行融合构造长短期记忆(LSTM)网络模型与海洋捕食者算法-最小二乘支持向量机(MPA-LSSVM)模型的输入集,得到各分量预测结果,根据评价指标选择各分量对应的预测模型,重构得到整体预测结果。算例分析结果表明,所提预测模型优于传统预测模型,有效提高了电力负荷预测精度。 展开更多
关键词 短期电力负荷预测 海洋捕食者算法 时空融合 COPULA理论 变分模态分解
下载PDF
一种时频尺度下的多元短期电力负荷组合预测方法 被引量:1
7
作者 李楠 姜涛 +1 位作者 隋想 胡禹先 《电力系统保护与控制》 EI CSCD 北大核心 2024年第13期47-58,共12页
随机因素的增加导致电力负荷数据成分日渐复杂,使短期负荷预测的难度逐渐增大。针对该问题,提出一种时频尺度下的时间卷积网络与多元线性回归相融合的组合预测模型。利用自适应噪声完备集合经验模态分解(complete ensemble empirical mo... 随机因素的增加导致电力负荷数据成分日渐复杂,使短期负荷预测的难度逐渐增大。针对该问题,提出一种时频尺度下的时间卷积网络与多元线性回归相融合的组合预测模型。利用自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)在时频域上将负荷数据分解为若干个频率特征不同的本征模态分量,在模糊熵准则下聚类为随机项和趋势项。采用皮尔逊系数从诸多影响因素中筛选出与电力负荷高度相关的特征,鉴于小时间尺度分析更易于挖掘局部细节特征,分别构建了随机项与趋势项的细颗粒度特征集。利用具有强非线性处理能力的时间卷积网络(temporal convolutional network,TCN)去预测随机项,利用结构简单及线性拟合效果好的多元线性回归(multiplelinearregression,MLR)去预测趋势项,将二者的预测结果进行叠加重构后获得最终预测值。在新加坡和比利时两组数据集上的实验结果证明:所提模型具有较高的预测精度、较好的泛化性能及鲁棒性。 展开更多
关键词 短期电力负荷预测 时频尺度 分解算法 模糊熵 模型融合
下载PDF
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:3
8
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
下载PDF
基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测 被引量:1
9
作者 杨国华 祁鑫 +4 位作者 贾睿 刘一峰 蒙飞 马鑫 邢潇文 《中国电力》 CSCD 北大核心 2024年第2期55-61,共7页
为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门... 为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门控循环单元(longshorttermmemory-gatedrecurrentunit,LSTM-GRU)的短期风电功率预测模型。首先,利用互补集合经验模态分解将原始风电功率序列分解为若干本征模态函数(intrinsic mode function,IMF)分量和一个残差(residual,RES)分量,利用样本熵算法将相近的分量进行重构;其次,搭建卷积神经网络和长短期记忆网络的并行网络结构,提取数据的局部特征和时序特征,并将特征融合后输入门控循环单元网络中进行学习预测;最后,通过算例进行验证,结果表明采用该模型后预测精度得到了有效提升,其均方根误差降低了15.06%、平均绝对误差降低了15.22%、决定系数提高了1.91%。 展开更多
关键词 短期风电功率预测 互补集合经验模态分解 样本熵 短期记忆网络 门控循环单元
下载PDF
基于残差修正CNN-BiLSTM的空中目标航迹短期预测算法 被引量:1
10
作者 王硕 吴楠 +1 位作者 黄洁 王建涛 《指挥控制与仿真》 2024年第1期55-63,共9页
针对因深度学习自身局限性和递归预测策略产生的累积误差,导致航迹预测精度不高的问题,提出了一种基于残差修正CNN-BiLSTM的空中目标航迹短期预测算法。首先,引入卷积模块用于提取航迹数据之中具有潜在关联的空间位置特征,利用双向长短... 针对因深度学习自身局限性和递归预测策略产生的累积误差,导致航迹预测精度不高的问题,提出了一种基于残差修正CNN-BiLSTM的空中目标航迹短期预测算法。首先,引入卷积模块用于提取航迹数据之中具有潜在关联的空间位置特征,利用双向长短时记忆网络提取航迹数据中的时序特征,并实现对空中目标的实时单步预测和多步超前预测;其次,引入整合移动平均自回归为残差修正模型,对实时单步预测产生的残差建模,计算混合神经网络模型多步超前预测时的残差值;最后,将混合神经网络模型和残差修正模型的输出结果进行融合,得到最终的航迹预测值。实验结果表明,该算法大大降低了神经网络因自身局限性产生的误差和因递归策略预测产生的累积误差,能够显著提高空中目标航迹短期预测的精度。 展开更多
关键词 残差修正 CNN-BiLSTM 短期预测 ARIMA
下载PDF
基于改进金豺算法的短期负荷预测 被引量:2
11
作者 谢国民 王润良 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期65-74,共10页
针对电力负荷序列波动性和预测精度不高的问题,提出一种基于变分模态分解、排列熵和改进金豺算法优化双向长短期记忆网络的预测模型。首先,利用变分模态分解重构原始负荷序列,再采用排列熵理论对分解后的子序列进行熵值重组;然后,利用... 针对电力负荷序列波动性和预测精度不高的问题,提出一种基于变分模态分解、排列熵和改进金豺算法优化双向长短期记忆网络的预测模型。首先,利用变分模态分解重构原始负荷序列,再采用排列熵理论对分解后的子序列进行熵值重组;然后,利用改进金豺算法对双向长短期记忆网络的参数进行优化,并对每个子序列建立预测模型;最后,组合各模型结果得到最终预测值。实验结果表明,本文模型预测精度更高,与真实值拟合度更好。 展开更多
关键词 变分模态分解 改进金豺算法 双向长短期记忆 组合模型 短期负荷预测
下载PDF
基于VMD-BiLSTM-WOA的短期风电功率预测 被引量:2
12
作者 史加荣 王双馨 《陕西科技大学学报》 北大核心 2024年第1期177-185,共9页
风力发电对于解决全球能源短缺问题有重要意义,准确预测风电功率有助于风电并网的合理调度和可靠的电网运行.文章提出了一种基于变分模态分解(Variational Mode Decomposition, VMD)、双向长短期记忆网络(Bidirectional Long Short-term... 风力发电对于解决全球能源短缺问题有重要意义,准确预测风电功率有助于风电并网的合理调度和可靠的电网运行.文章提出了一种基于变分模态分解(Variational Mode Decomposition, VMD)、双向长短期记忆网络(Bidirectional Long Short-term Memory Network, BiLSTM)以及鲸鱼优化算法(Whale Optimization Algorithm, WOA)的混合深度学习模型,以用于短期风电功率预测.首先,VMD将原始风电功率分解为多个子模态,有效减少了序列的波动性;然后对每个子模态分别建立BiLSTM模型,使用WOA对BiLSTM中的参数进行优化,以提高混合模型的效率和预测性能;最后将各个子模型的结果叠加得到最终预测结果.在实验中通过建立不同的比较模型来说明改进策略的有效性和优越性,结果表明所提的混合模型在风电功率预测中具有较高的预测精度. 展开更多
关键词 风电功率 变分模态分解 双向长短期记忆网络 鲸鱼优化 短期记忆网络
下载PDF
基于VMD-SE的电力负荷分量的多特征短期预测 被引量:1
13
作者 邵必林 纪丹阳 《中国电力》 CSCD 北大核心 2024年第4期162-170,共9页
为提高电力负荷的预测精度,提出一种基于VMD-SE的电力负荷分量的多特征短期预测方法。首先采用变分模态分解(VMD)将原始负荷分解为一系列模态分量与残差,VMD的分解层数由样本熵值(sample entropy,SE)确定;然后对比原始负荷与模态分量的S... 为提高电力负荷的预测精度,提出一种基于VMD-SE的电力负荷分量的多特征短期预测方法。首先采用变分模态分解(VMD)将原始负荷分解为一系列模态分量与残差,VMD的分解层数由样本熵值(sample entropy,SE)确定;然后对比原始负荷与模态分量的SE值,重构为平稳分量和波动分量,来降低运算规模;同时利用皮尔逊相关系数来筛选特征变量,删除特征冗余,建立灰狼算法优化后的支持向量回归模型(GWO-SVR)和长短期记忆神经网络(LSTM)分别对平稳分量和波动分量预测;最后以某地区2018—2020年用电负荷为例进行实验。实验证明:此模型精准度高达94.7%,平均绝对百分误差降低到2.98%,具有更好的精准性和适用性。 展开更多
关键词 短期预测 VMD 样本熵 波动分量 平稳分量 GWO-SVR 短期记忆神经网络
下载PDF
基于聚类的HPO-BILSTM光伏功率短期预测 被引量:2
14
作者 周育才 肖添 +2 位作者 谢七月 付强 钟敏 《太阳能学报》 EI CAS CSCD 北大核心 2024年第4期512-518,共7页
考虑到光伏发电功率在不同天气类型下的波动性和不确定性,对此提出一种基于模糊C均值聚类算法(FCM)和猎食者优化算法(HPO)优化双向长短期记忆网络(BILSTM)的光伏发电短期功率预测模型。首先对光伏发电数据进行处理和分析,再进行主成分分... 考虑到光伏发电功率在不同天气类型下的波动性和不确定性,对此提出一种基于模糊C均值聚类算法(FCM)和猎食者优化算法(HPO)优化双向长短期记忆网络(BILSTM)的光伏发电短期功率预测模型。首先对光伏发电数据进行处理和分析,再进行主成分分析(PCA)降维和FCM聚类算法将数据按天气类型分为阴、晴、雨;最后通过HPO筛选得出BILSTM神经网络的最佳超参数,避免因超参数设置不佳对实验带来的影响,进一步提高实验的准确性和模型的泛化能力。最后通过预测和对比实验进行分析,验证所提方法的优越性。 展开更多
关键词 光伏发电 双向长短期记忆网络 功率预测 降维 聚类 优化算法
下载PDF
基于双层优化VMD-LSTM的农村超短期电力负荷预测 被引量:2
15
作者 王俊 王继烨 +2 位作者 程坤 方均 鞠丹阳 《沈阳农业大学学报》 CAS CSCD 北大核心 2024年第1期92-102,共11页
稳定的供电是农村发展建设的有力保障,而电力负荷水平是建设效果的重要衡量标准,因此建立精确的负荷预测模型可以更准确直观显现电力负荷情况,为供电公司制定决策提供有力支撑。由于LSTM负荷预测模型在数据预测方面存在收敛性差、预测... 稳定的供电是农村发展建设的有力保障,而电力负荷水平是建设效果的重要衡量标准,因此建立精确的负荷预测模型可以更准确直观显现电力负荷情况,为供电公司制定决策提供有力支撑。由于LSTM负荷预测模型在数据预测方面存在收敛性差、预测精度不高等问题,为提高模型的预测精度,提出一种基于双层优化VMD-LSTM的超短期电力负荷预测方法。首先提出麻雀算法优化变分模态分解(sparrow variational mode decomposition,SVMD),通过SVMD将原始数据转化为模态分量(intrinsic mode functions,IMF);其次采用改进樽海鞘群算法(association salp swarm algorithm,ASSSA)优化LSTM模型。通过引入4种策略增强标准樽海鞘算法优化能力;最后将各模态分量分别代入到新模型并进行叠加预测。选取辽宁省某市某乡村10kV变压器真实历史负荷数据,以均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、拟合度(R^(2))作为评价指标,并与其他基础预测模型进行对比,结果表明,改进后的算法在计算精度、稳定性方面均优于其他基础预测模型。 展开更多
关键词 短期预测 双层优化 樽海鞘群算法 变分模态分解 叠加预测
下载PDF
改进黑猩猩算法的光伏发电功率短期预测 被引量:3
16
作者 谢国民 陈天香 《电力系统及其自动化学报》 CSCD 北大核心 2024年第2期135-143,共9页
针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,... 针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,进行光伏功率预测。首先,利用密度聚类和混合评价函数改进K-means++对原始数据进行自适应类别划分。其次,通过相关性分析和随机森林特征提取构建模型的输入特征集。最后,根据特征集建立基于DK-PCHOA-LSSVM的短期光伏发电预测模型。结合实际算例,结果表明:该模型在恶劣天气下预测精度明显优于其他模型,验证了其有效性和优越性。 展开更多
关键词 光伏功率短期预测 自适应聚类 最小二乘支持向量机 黑猩猩优化算法 极端天气
下载PDF
基于CNN-BiGRU-Attention的短期电力负荷预测 被引量:2
17
作者 任爽 杨凯 +3 位作者 商继财 祁继明 魏翔宇 蔡永根 《电气工程学报》 CSCD 北大核心 2024年第1期344-350,共7页
针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电... 针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电力负荷预测上的不同优点,提出一种基于CNN-BiGRU-Attention的混合预测模型。该方法首先通过CNN对历史负荷和气象数据进行初步特征提取,然后利用BiGRU进一步挖掘特征数据间时序关联,再引入注意力机制,对BiGRU输出状态给与不同权重,强化关键特征,最后完成负荷预测。试验结果表明,该模型的平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)、判定系数(R-square,R~2)分别为0.167%、0.057%、0.993,三项指标明显优于其他模型,具有更高的预测精度和稳定性,验证了模型在短期负荷预测中的优势。 展开更多
关键词 卷积神经网络 双向门控循环单元 注意力机制 短期电力负荷预测 混合预测模型
下载PDF
基于二次分解双向门控单元新型电力系统超短期负荷预测 被引量:2
18
作者 王德文 安涵 《电力科学与工程》 2024年第3期1-9,共9页
在新型电力系统中,电力负荷随机性和波动性较强,现有预测方法难以对其实现高精度预测。为此,提出一种基于二次分解和双向门控循环单元的超短期负荷预测模型。首先,针对电力负荷的强随机性和强波动性,利用自适应噪声完备经验模态分解对... 在新型电力系统中,电力负荷随机性和波动性较强,现有预测方法难以对其实现高精度预测。为此,提出一种基于二次分解和双向门控循环单元的超短期负荷预测模型。首先,针对电力负荷的强随机性和强波动性,利用自适应噪声完备经验模态分解对电力负荷历史序列进行初步分解,使负荷序列更加平稳。随后,对初步分解得到的强非平稳分量运用连续变分模态分解进行二次分解,降低其预测难度。最后,为充分学习电力负荷的时序特征,在预测过程构建基于双向门控循环单元的超短期电力负荷预测模型。实验结果表明,该模型相较于现有优秀预测模型有更高的预测精度。 展开更多
关键词 新型电力系统 短期负荷 负荷预测 二次分解 双向门控循环单元
下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:1
19
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
下载PDF
基于奇异谱分析和辛几何模态分解的短期碳排放预测模型 被引量:1
20
作者 王维军 吴仁杰 《电力科学与工程》 2024年第1期50-62,共13页
在短时期内对碳排放水平进行评估和规划,对制定精准的减排目标和有效的政策措施可以起到辅助作用。将奇异谱分析分解法(Singular spectrum analysis decomposition,SSAD)和辛几何模态分解(Symplectic geometry mode decomposition,SGMD... 在短时期内对碳排放水平进行评估和规划,对制定精准的减排目标和有效的政策措施可以起到辅助作用。将奇异谱分析分解法(Singular spectrum analysis decomposition,SSAD)和辛几何模态分解(Symplectic geometry mode decomposition,SGMD)组合成新型的二次信号分解法,并应用于每日碳排放量预测。在对原始序列进行二次分解之后,利用快速傅里叶变换对子序列进行重构,并应用偏自相关函数来选择合适的输入变量。最后,利用麻雀搜索算法(Sparrow search algorithm,SSA)对长短期记忆网络(Long short-term memory network,LSTM)进行优化,建立了SSAD-SGMD-SSA-LSTM模型。通过与其他模型进行对比实验,发现SSAD-SGMD二次分解更加适合碳排放时间序列预处理,并且可以进一步提高预测精度。SSAD-SGMD模型与集成经验模态分解和变分模态分解相结合的二次分解模型相比,模型的可决系数R2提高了1.83%,平均绝对百分比误差(Mean absolute percentage error,MAPE)有所降低,均方根误差(Root mean square error,RMSE)降低了43.16%。此外,经过SSA优化后的LSTM模型,R2提高了1.49%,MAPE有所降低,RMSE降低了38.64%。所提出的模型能够有效提升短期碳排放预测的准确性。 展开更多
关键词 短期碳排放预测 二次信号分解算法 麻雀搜索算法 短期记忆网络
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部