期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进CEEMDAN的深度学习电煤库存STIFM
1
作者 张宇晨 姜雪松 +1 位作者 刘森 李春伟 《计算机仿真》 2024年第6期167-173,243,共8页
准确预测燃煤电厂的电煤库存是优化能源储存、保障电力供应的重要依据。针对实际生活中短期电煤库存呈不平稳性、随机性和局部突变等特点,提出一种基于改进CEEMDAN分解的TCN-BiGRU-Attention组合模型电煤库存短期预测方法,分析电煤库存... 准确预测燃煤电厂的电煤库存是优化能源储存、保障电力供应的重要依据。针对实际生活中短期电煤库存呈不平稳性、随机性和局部突变等特点,提出一种基于改进CEEMDAN分解的TCN-BiGRU-Attention组合模型电煤库存短期预测方法,分析电煤库存特征并选取主要影响因素,将影响因素通过词向量的方式构建成新时序序列,利用于完全自适应噪声集合经验模态分解(Complete EEMD with Adaptive Noise, CEEMDAN)分解数据后通过零率(Zero Crossing Rate, ZCR)将分量分类为高、中和低频并叠加求和,通过时序卷积网络(Temporal Convolutional Network, TCN)提取不同频段时序序列的隐藏特征,以特征向量的方式输入双向门控循环神经网络(Bidirectional Gated Recurrent Unite, BiGRU),并结合Attention机制(Attention Mechanism)给予不同权值突出关键特征并产生预测结果,将各频段序列预测结果求和产生最终预测结果。结果表明,上述模型比单一和其它组合模型预测结果更准确。 展开更多
关键词 短期库存预测 时序卷积网络 完全自适应噪声集合经验模态分解 双向门控循环神经网络 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部