期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于门控循环单元的多因素感知短期游客人数预测模型
被引量:
6
1
作者
王敬昌
陈岭
+2 位作者
余珊珊
蒋晨书
吴勇
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2019年第12期2357-2364,共8页
提出的预测模型采取分时序分段策略,使用卷积神经网络(CNN)提取景区多因素时序数据的特征,并对不同因素的时序数据赋予不同的权重,将结果送入门控循环单元(GRU)以挖掘其中的时序信息,结合预测时刻的情境信息(天气状况和节假日)预测短期...
提出的预测模型采取分时序分段策略,使用卷积神经网络(CNN)提取景区多因素时序数据的特征,并对不同因素的时序数据赋予不同的权重,将结果送入门控循环单元(GRU)以挖掘其中的时序信息,结合预测时刻的情境信息(天气状况和节假日)预测短期景区内游客人数.在某景区的闸机数据集和监控点车辆数据集上的实验结果表明:基于门控循环单元的多因素感知短期游客人数预测模型可以充分考虑多情境因素并对不同因素时序数据赋予不同的权重,均方根误差(RMSE)和平均绝对百分比误差(MAPE)均小于传统模型,能够有效降低短期游客人数预测误差。
展开更多
关键词
短期游客人数预测
多因素感知
门控循环单元(GRU)
卷积神经网络(CNN)
情境信息
下载PDF
职称材料
题名
基于门控循环单元的多因素感知短期游客人数预测模型
被引量:
6
1
作者
王敬昌
陈岭
余珊珊
蒋晨书
吴勇
机构
浙江鸿程计算机系统有限公司
浙江大学计算机科学与技术学院
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2019年第12期2357-2364,共8页
基金
国家重点研发计划资助项目(2018YFB0505000)
文摘
提出的预测模型采取分时序分段策略,使用卷积神经网络(CNN)提取景区多因素时序数据的特征,并对不同因素的时序数据赋予不同的权重,将结果送入门控循环单元(GRU)以挖掘其中的时序信息,结合预测时刻的情境信息(天气状况和节假日)预测短期景区内游客人数.在某景区的闸机数据集和监控点车辆数据集上的实验结果表明:基于门控循环单元的多因素感知短期游客人数预测模型可以充分考虑多情境因素并对不同因素时序数据赋予不同的权重,均方根误差(RMSE)和平均绝对百分比误差(MAPE)均小于传统模型,能够有效降低短期游客人数预测误差。
关键词
短期游客人数预测
多因素感知
门控循环单元(GRU)
卷积神经网络(CNN)
情境信息
Keywords
short-term tourist number prediction
multi-factor perception
gated recurrent unit(GRU)
convolutional neural network(CNN)
context information
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于门控循环单元的多因素感知短期游客人数预测模型
王敬昌
陈岭
余珊珊
蒋晨书
吴勇
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2019
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部