随着电力现货市场的开展,短期电价预测对于各市场主体的决策有着重要意义,而高比例清洁能源与储能的不断接入给短期电价预测带来很大挑战。提出一种基于最大信息系数法(maximum information coefficient,MIC)、集成经验模态分解(ensembl...随着电力现货市场的开展,短期电价预测对于各市场主体的决策有着重要意义,而高比例清洁能源与储能的不断接入给短期电价预测带来很大挑战。提出一种基于最大信息系数法(maximum information coefficient,MIC)、集成经验模态分解(ensemble empirical mode decomposition,EEMD)和改进Informer的短期电价多步预测模型。首先,采用MIC分析出与电价相关性较高的几类因素作为模型原始输入序列;然后,将上述原始序列进行EEMD分解后得到多条本征模函数(intrinsic mode function,IMF)和一个残余项后输入改进Informer分别得到翌日24点多步预测结果,再对预测结果进行滤波;最后,将滤波后序列的预测结果叠加得到最终的预测值。以西班牙电力市场数据进行验证,实验结果证明该模型可以有效提高电力市场短期电价多步预测精度。展开更多
提出了一种改进的动态模糊神经网络DFNN(Dynam ic Fuzzy Neural Network)的短期电价预测方法。首先对采集到的信息进行特征提取,然后利用模糊粗糙集理论中的信息熵进行属性简化、去掉冗余信息,最后用得到的属性作为动态模糊神经网络(DF...提出了一种改进的动态模糊神经网络DFNN(Dynam ic Fuzzy Neural Network)的短期电价预测方法。首先对采集到的信息进行特征提取,然后利用模糊粗糙集理论中的信息熵进行属性简化、去掉冗余信息,最后用得到的属性作为动态模糊神经网络(DFNN)的输入进行训练预测。在模糊神经网络内部引入递归环节,构成了动态模糊神经网络,并采用具有全局寻优能力的遗传算法来训练网络,克服了单纯BP算法易陷入局部最优解的困境。最后以美国加州电力市场公布的2000年数据进行了模型训练和预测,结果表明该方法所建立的预测模型具有较高的预测精度。展开更多
为了能够精确预测短期电价为市场参与者提供有效的决策指导,首先对电价数据进行水平处理,然后建立BP神经网络(BPNN)和最小二乘支持向量机(LSSVM)组合变权模型(BP LSSVM),同时提出采用遗传算法(GA)对该组合变权模型的权重进行优化,最后...为了能够精确预测短期电价为市场参与者提供有效的决策指导,首先对电价数据进行水平处理,然后建立BP神经网络(BPNN)和最小二乘支持向量机(LSSVM)组合变权模型(BP LSSVM),同时提出采用遗传算法(GA)对该组合变权模型的权重进行优化,最后将权重优化之后的GA BP LSSVM模型应用于美国PJM电力市场的边际电价预测,并与传统的LSSVM与BPNN的预测结果进行比较,结果表明,该组合变权模型能够提供更加精确的预测电价。展开更多
文摘提出了一种改进的动态模糊神经网络DFNN(Dynam ic Fuzzy Neural Network)的短期电价预测方法。首先对采集到的信息进行特征提取,然后利用模糊粗糙集理论中的信息熵进行属性简化、去掉冗余信息,最后用得到的属性作为动态模糊神经网络(DFNN)的输入进行训练预测。在模糊神经网络内部引入递归环节,构成了动态模糊神经网络,并采用具有全局寻优能力的遗传算法来训练网络,克服了单纯BP算法易陷入局部最优解的困境。最后以美国加州电力市场公布的2000年数据进行了模型训练和预测,结果表明该方法所建立的预测模型具有较高的预测精度。
文摘为了能够精确预测短期电价为市场参与者提供有效的决策指导,首先对电价数据进行水平处理,然后建立BP神经网络(BPNN)和最小二乘支持向量机(LSSVM)组合变权模型(BP LSSVM),同时提出采用遗传算法(GA)对该组合变权模型的权重进行优化,最后将权重优化之后的GA BP LSSVM模型应用于美国PJM电力市场的边际电价预测,并与传统的LSSVM与BPNN的预测结果进行比较,结果表明,该组合变权模型能够提供更加精确的预测电价。