期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
2020年6月26日新疆于田6.4级地震前中期和短期预测依据与启示 被引量:3
1
作者 宋治平 薛艳 +6 位作者 马亚伟 宋春燕 张小涛 晏锐 孟令媛 闫伟 苑争一 《中国地震》 北大核心 2020年第3期407-416,共10页
2020年6月26日新疆于田6.4级地震发生在2020年度全国地震危险区内,震前作出了较好的中期(年度)和短期(月尺度和周尺度)预测,是少有的地球物理观测能力较低地区的强震前中期和短临预测较好震例。本文梳理了中期和短期预测的主要依据及其... 2020年6月26日新疆于田6.4级地震发生在2020年度全国地震危险区内,震前作出了较好的中期(年度)和短期(月尺度和周尺度)预测,是少有的地球物理观测能力较低地区的强震前中期和短临预测较好震例。本文梳理了中期和短期预测的主要依据及其预测效能,研究表明,震前中期异常主要有流动地磁、多方法组合、5.0级地震平静打破、6.0级地震的准周期活动等;短期异常有4.0级地震活动图像、中源地震影响、于田垂直摆倾斜EW、于田GNSS基准站EW位移、和田GNSS基准站EW位移等。在总结震前分析预测过程的基础上,提出针对地球物理观测密度低地区的地震危险区论证和短临跟踪的建议,为该类地区的地震危险区判定及跟踪工作提供宝贵经验。 展开更多
关键词 2020 年于田6.4 级地震中期预测短期预测
下载PDF
大数据挖掘下冲击性负荷特性电网短期负荷预测的探索与实践 被引量:7
2
作者 李云飞 张鹏 +4 位作者 程鹏飞 范传忠 程硕 张臣 赵严 《电力大数据》 2019年第4期80-86,共7页
针对抚顺地区冲击性负荷占地区总负荷比重较大,而地区总负荷冲击特性明显时,有可能引起系统频率的连续振荡以及电压摆动的情况,就如何提高地区电网短期负荷预测精确度进行探索和相关的实践,改善冲击性负荷预测和预处理的准确程度,以期... 针对抚顺地区冲击性负荷占地区总负荷比重较大,而地区总负荷冲击特性明显时,有可能引起系统频率的连续振荡以及电压摆动的情况,就如何提高地区电网短期负荷预测精确度进行探索和相关的实践,改善冲击性负荷预测和预处理的准确程度,以期望能够合理经济调度、降低生产成本、保障电网安全,该文提出了大数据挖掘下冲击性负荷特性电网短期负荷预测方法,经测试在抚顺电网取得很好的效果,改善了冲击性负荷特性下本地区电网负荷曲线波动大且规律性不强导致短期负荷预测准确率下降的问题,可以为当前公司负荷预测工作提供方向思路和指导建议,这种方法同样适用于葫芦岛市等其他具有冲击负荷特性的地区电网短期负荷预测,改善当地负荷短期预测水平。 展开更多
关键词 大数据分析 冲击性负荷 短期预测预测 支持向量机 灰色关联度
下载PDF
实用化电力系统短期负荷预测软件的设计与实现
3
作者 陈芳 赵剑剑 童健军 《广东输电与变电技术》 2005年第1期1-5,共5页
介绍了短期负荷预测软件 fhycl.0的没计原则、系统构成、预测模型库、数据校核的原理以及简易专家系统、跨平台接口的实现。该软件人机界面友好、运行稳定、迅速,提供多种预测模型,适用范围广泛。
关键词 电力系统短期负荷预测、人机界面、预测软件、数据校核、专家系统
下载PDF
A Lightweight Temporal Convolutional Network for Human Motion Prediction 被引量:1
4
作者 WANG You QIAO Bing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期150-157,共8页
A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain... A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain the spatial structure information of human motion and extract the correlation in the time series of human motion.The residual structure is applied to the proposed network model to alleviate the problem of gradient disappearance in the deep network.Experiments on the Human 3.6M dataset demonstrate that the proposed method effectively reduces the errors of motion prediction compared with previous methods,especially of long-term prediction. 展开更多
关键词 human motion prediction temporal convolutional network short-term prediction long-term prediction deep neural network
下载PDF
A hybrid model for short-term rainstorm forecasting based on a back-propagation neural network and synoptic diagnosis 被引量:1
5
作者 Guolu Gao Yang Li +2 位作者 Jiaqi Li Xueyun Zhou Ziqin Zhou 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第5期13-18,共6页
Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network... Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features. 展开更多
关键词 RAINSTORM Short-term prediction method Back-propagation neural network Hybrid forecast model
下载PDF
PV Power Short-Term Forecasting Model Based on the Data Gathered from Monitoring Network 被引量:1
6
作者 ZHONG Zhifeng TAN Jianjun +1 位作者 ZHANG Tianjin ZHU Linlin 《China Communications》 SCIE CSCD 2014年第A02期61-69,共9页
The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from... The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from the geographically separated photovoltaic plants through network. In this paper, a forecasting model is designed with an optimization algorithm which is developed with the combination of PSO (Particle Swarm Optimization) and BP (Back Propagation) neural network. The proposed model is further validated and the experiment results show that the predication model assures the prediction accuracy regardless the day type transitions and other relevant factors, in the proposed model, the prediction error rate is worth less than 20% in all different climatic conditions and most of the prediction error accuracy is less than 10% in sunny day, and whose precision satisfies the management requirements of the power grid companies, reflecting the significance of the proposed model in engineering applications. 展开更多
关键词 grid-connected PV plant short-termpower generation prediction particle swarmoptimization BP neural network
下载PDF
Chaotic Load Series Forecasting Based on MPMR
7
作者 Liu Zunxiong Cheng Quanhu Zhang Deyun 《Electricity》 2006年第1期25-28,共4页
Minimax probability machine regression (MPMR) was proposed for chaotic load time series global prediction. In MPMR, regression function maximizes the minimum probability that future predication will be within an ε ... Minimax probability machine regression (MPMR) was proposed for chaotic load time series global prediction. In MPMR, regression function maximizes the minimum probability that future predication will be within an ε to the true regression function. After exploring the principle of MPMR, and verifying the chaotic property of the load series from a certain power system, one-day-ahead predictions for 24 time points next day wcre done with MPMR. Thc results demonstrate that MPMP has satisfactory prediction efficiency. Kernel function shape parameter and regression tube value may influence the MPMR-based system performance. In the experiments, cross validation was used to choose the two parameters. 展开更多
关键词 electrical load short-term forecasting minimax probability regression chaos theory
下载PDF
Wavelet time series MPARIMA modeling for power system short term load forecasting
8
作者 冉启文 单永正 +1 位作者 王建赜 王骐 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第1期11-18,共8页
The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity ex... The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity existed in power system short term quarter hour load time series, and can therefore accurately forecast the quarter hour loads of weekdays and weekends, and provide more accurate results than the conventional techniques, such as artificial neural networks and autoregressive moving average(ARMA) models test results. Obtained with a power system networks in a city in Northeastern part of China confirm the validity of the approach proposed. 展开更多
关键词 wavelet forecasting method short term load forecast MPARIMA model
下载PDF
Short Term Wind Power Prediction Using Wavelet Transform and ARIMA
9
作者 In-Yong Seo Bok-Nam Hat +3 位作者 Sang-Ok Kin Won Nam-Koong Dong-Wan Seo Seong-JunKim 《Journal of Energy and Power Engineering》 2012年第11期1786-1790,共5页
A sustainable production of electricity is essential for low carbon green growth in South Korea. Although wind energy is unlimited in potential, both intermittency and volatility should be tackled for smart grid integ... A sustainable production of electricity is essential for low carbon green growth in South Korea. Although wind energy is unlimited in potential, both intermittency and volatility should be tackled for smart grid integration in future. To cope with this, many works have been done for wind speed and power forecasting. It is shown that statistical techniques are useful for short-term forecasting of wind power. This paper presents a statistical wind speed forecasting. The wavelet decomposition is employed as a de-noising technique. An illustration will be given by real-world dataset. According to the result, the MAD (mean absolute deviation) is improved as much as 10%. 展开更多
关键词 Wind speed forecasting autoreressive model wavelet decomnosition mean absolute deviation.
下载PDF
A SELF-SIMILAR LOCAL NEURO-FUZZY MODEL FOR SHORT-TERM DEMAND FORECASTING 被引量:2
10
作者 HASSANI Hossein ABDOLLAHZADEH Majid +1 位作者 IRANMANESH Hossein MIRANIAN Arash 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第1期3-20,共18页
This paper proposes a selfsimilar local neurofuzzy (SSLNF) model with mutual informati onbased input selection algorithm for the shortterm electricity demand forecasting. The proposed self similar model is composed ... This paper proposes a selfsimilar local neurofuzzy (SSLNF) model with mutual informati onbased input selection algorithm for the shortterm electricity demand forecasting. The proposed self similar model is composed of a number of local models, each being a local linear neurofuzzy (LLNF) model, and their associated validity functions and can be interpreted itself as an LLNF model. The proposed model is trained by a nested local liner model tree (NLOLIMOT) learning algorithm which partitions the input space into axisorthogonal subdomains and then fits an LLNF model and its associated validity function on each subdomain. Furthermore, the proposed approach allows different input spaces for rule premises (validity functions) and consequents (local models). This appealing property is employed to assign the candidate input variables (i.e., previous load and temperature) which influence shortterm electricity demand in linear and nonlinear ways to local models and validity functions, respectively. Numerical results from shortterm load forecasting in the New England in 2002 demonstrated the accuracy of the SSLNF model for the STLF applications. 展开更多
关键词 Mutual information self-similar local neuro-fuzzy model short-term load forecasting.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部