期刊文献+
共找到262篇文章
< 1 2 14 >
每页显示 20 50 100
基于信息调控和MATCN的超短期风电功率多步预测
1
作者 陈磊 黄凯阳 +3 位作者 张怡 陈禹 张志瑞 尹振楠 《现代电子技术》 北大核心 2024年第18期1-7,共7页
对波动的风电功率进行有效预测,是电网供需平衡、系统稳定运行的重要保障。为此,提出一种基于信息调控和MATCN的超短期风电功率多步预测方法。利用现有数据衍生出高阶项与交互项,提升特征序列数量与有效特征占比。针对复杂的风电数据结... 对波动的风电功率进行有效预测,是电网供需平衡、系统稳定运行的重要保障。为此,提出一种基于信息调控和MATCN的超短期风电功率多步预测方法。利用现有数据衍生出高阶项与交互项,提升特征序列数量与有效特征占比。针对复杂的风电数据结构,使用变分模态分解(VMD)将其拆分,根据子序列相关性和方差贡献率的计算结果保留重要序列分量,其余分量进行聚合,降低计算负担,缩短训练时间。随后,引入注意力机制构造多头注意力时间卷积网络(MATCN),通过注意力得分调整网络内部卷积单元之间的传递信息,实现模型对各序列分量的预测。最后,重构序列分量预测值,得到最终的输出结果。在实例数据上对所提模型进行对比验证,结果表明,该模型在不同步幅下均具有较好的预测效果。 展开更多
关键词 电功率 多步预测 变分模态分解 多头注意力时间卷积网络 注意力机制 信息调控
下载PDF
基于区间二型FLS的短期风电功率多步预测 被引量:4
2
作者 李军 王星辉 《控制工程》 CSCD 北大核心 2019年第2期215-222,共8页
针对短期风电功率预测,提出一种基于二型非单值区间二型模糊逻辑系统(FLS)的多步预测方法。考虑到风电功率数据的随机性特点,建立二型非单值区间二型FLS预测模型,应用反向传播(BP)算法设计预测模型前件和后件的参数,进一步将奇异值分解-... 针对短期风电功率预测,提出一种基于二型非单值区间二型模糊逻辑系统(FLS)的多步预测方法。考虑到风电功率数据的随机性特点,建立二型非单值区间二型FLS预测模型,应用反向传播(BP)算法设计预测模型前件和后件的参数,进一步将奇异值分解-QR(SVD-QR)算法应用到BP算法的结果中以确定约简后的模糊规则集合,迭代至算法的执行结果满足预测精度要求或者规定的训练代数为止。将所提方法应用于风电功率预测实例中,同等条件下,还分别与支持向量机(SVM)、一型非单值FLS、单值区间二型FLS、一型非单值区间二型FLS预测方法进行了比较。实验结果表明,所提方法取得了较高的预测精度,具有很好的预测效果,同时,模型的模糊规则数少。 展开更多
关键词 区间二型模糊逻辑系统 二型非单值模糊化 BP算法 SVD-QR算法 电功率 多步预测
下载PDF
基于IEEMD与LS-SVM组合的短期风电功率多步预测方法 被引量:14
3
作者 张鑫磊 李根 《电测与仪表》 北大核心 2020年第6期52-60,共9页
针对组合预测方法中经验模态分解(EMD)部分存在处理非线性和非稳态信号的不足,提出了一种改进的集总经验模态分解(IEEMD)与最小二乘支持向量机(LS-SVM)模型相结合的短时风电功率预测方法。该方法首先通过对加噪辅助分解方法噪声准则的研... 针对组合预测方法中经验模态分解(EMD)部分存在处理非线性和非稳态信号的不足,提出了一种改进的集总经验模态分解(IEEMD)与最小二乘支持向量机(LS-SVM)模型相结合的短时风电功率预测方法。该方法首先通过对加噪辅助分解方法噪声准则的研究,推导出加噪方式采用正负成对形式可以有效消除分量中的残余噪声,且确定加噪幅值和分解次数采取固定值:0.014 SD和2次。然后将原始数据通过IEEMD方法分解成一系列固有模态函数,运用游程判定法进行筛选重构成高中低频三种频段,并对不同频段的分量建立LS-SVM多步预测模型,最后将预测值自适应叠加作为最终的预测结果。通过仿真实验和实测风电功率实验验证了所提方法在预测精度上具有一定优势,为短时预测方法提供了一种新思路。 展开更多
关键词 电功率 多步预测 EMD IEEMD LS-SVM
下载PDF
基于CEEMDAN⁃TCN的短期风电功率预测研究
4
作者 李敖 冉华军 +2 位作者 李林蔚 王新权 高越 《现代电子技术》 北大核心 2025年第2期97-102,共6页
风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分... 风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分解和时间卷积网络的短期风电功率预测方法。首先利用自适应噪声完备集合经验模态分解对初始风电功率数据进行分解,得到多个相对稳定的子数据序列;然后将其分别作为时间卷积网络的输入,利用时间卷积网络模型进行特征提取和功率预测;最后将所有预测值进行汇总,得到最终的功率预测值。使用宁夏某地区真实风电功率数据进行验证,并与传统预测模型比较,结果表明所提方法具有较高的预测精度,可为风电功率短期预测等相关工作提供相关参考。 展开更多
关键词 短期电功率预测 自适应噪声的完备集合经验模态分解(CEEMDAN) 时间卷积网络(TCN) 特征提取 预测精度 时间序列分析
下载PDF
基于动态指数时间平滑随机梯度下降的短期风电功率在线概率预测方法
5
作者 乔如妤 于凯 +8 位作者 李泽民 刘雁行 徐恺 李旭东 梁楠 冯军 王耀健 温洪林 顾洁 《供用电》 北大核心 2025年第2期100-107,共8页
为解决风电出力的非平稳性所引起的预测模型参数时变问题,降低短期风电功率预测误差,提出了一种风电功率在线概率预测方法。通过构建分位数神经网络模型及动态更新参数,实现了预测准确性的提升;采用凸神经网络模型,实现了数值天气预报... 为解决风电出力的非平稳性所引起的预测模型参数时变问题,降低短期风电功率预测误差,提出了一种风电功率在线概率预测方法。通过构建分位数神经网络模型及动态更新参数,实现了预测准确性的提升;采用凸神经网络模型,实现了数值天气预报和风电功率间的非线性映射;引入动态局部遗憾度,将凸神经网络模型拓展为在线学习模型,并采用动态指数时间平滑随机梯度下降(dynamic exponentially time-smoothed stochastic gradient descent,DTS-SGD)算法实现参数更新。最后,结合2014年全球能源预测大赛发布的风力发电数据,验证了所提方法的预测准确性以及对超参数选择的鲁棒性,并验证了所提方法可以保证在较高计算效率的同时,能够自适应地应对参数时变问题。 展开更多
关键词 短期电功率预测 概率预测 在线学习 非平稳性 机器学习
下载PDF
基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测 被引量:2
6
作者 杨国华 祁鑫 +4 位作者 贾睿 刘一峰 蒙飞 马鑫 邢潇文 《中国电力》 CSCD 北大核心 2024年第2期55-61,共7页
为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门... 为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门控循环单元(longshorttermmemory-gatedrecurrentunit,LSTM-GRU)的短期风电功率预测模型。首先,利用互补集合经验模态分解将原始风电功率序列分解为若干本征模态函数(intrinsic mode function,IMF)分量和一个残差(residual,RES)分量,利用样本熵算法将相近的分量进行重构;其次,搭建卷积神经网络和长短期记忆网络的并行网络结构,提取数据的局部特征和时序特征,并将特征融合后输入门控循环单元网络中进行学习预测;最后,通过算例进行验证,结果表明采用该模型后预测精度得到了有效提升,其均方根误差降低了15.06%、平均绝对误差降低了15.22%、决定系数提高了1.91%。 展开更多
关键词 短期电功率预测 互补集合经验模态分解 样本熵 短期记忆网络 门控循环单元
下载PDF
基于密度聚类模态分解的卷积神经网络和长短期记忆网络短期风电功率预测 被引量:1
7
作者 崔明勇 董文韬 卢志刚 《现代电力》 北大核心 2024年第4期631-641,共11页
近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition wi... 近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和卷积神经网络与长短期记忆网络结合的短期风电功率预测方法。首先,利用密度聚类将风电功率与天气特征分成不同类别的数据集,通过自适应噪声完备集成经验模态分解算法将不同类别的数据进行频域分解得到子序列分量。以此为基础,将不同的子序列分量与天气特征进行特征选择,输入到卷积神经网络与长短期记忆网络的预测模型。最后,将不同的预测结果进行叠加得到最终的预测结果。整个预测过程通过聚类、分解和特征选择,有效提高了短期风电功率预测的准确度。 展开更多
关键词 电功率预测 密度聚类 自适应噪声完备集成经验模态分解 卷积神经网络 短期记忆网络
下载PDF
基于ikPCA-FABAS-KELM的短期风电功率预测 被引量:1
8
作者 徐武 范鑫豪 +2 位作者 沈智方 刘洋 刘武 《南京信息工程大学学报》 CAS 北大核心 2024年第3期321-331,共11页
为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型.首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型... 为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型.首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型运行速度;其次,引入萤火虫个体吸引策略对天牛须算法(BAS)进行改进,提出FABAS算法;最后,利用FABAS算法对核极限学习机(KELM)的正则化参数C和核参数γ进行寻优,降低人为因素对模型盲目训练的影响,提高模型预测精度.仿真结果显示,提出的预测模型有效提高了传统模型的预测精度. 展开更多
关键词 短期电功率预测 萤火虫算法 天牛须算法 核主成分分析 核极限学习机
下载PDF
基于VMD-LILGWO-LSSVM短期风电功率预测
9
作者 王瑞 李虹锐 +1 位作者 逯静 卜旭辉 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第2期128-136,共9页
目的为了减小风电功率并入国家电网时产生的频率波动,提高风电功率预测精度,方法提出一种结合变分模态分解(VMD)、改进灰狼算法(LILGWO)和最小二乘支持向量机(LSSVM)的风电功率短期预测方法。首先通过VMD方法将风电功率序列分解重构成3... 目的为了减小风电功率并入国家电网时产生的频率波动,提高风电功率预测精度,方法提出一种结合变分模态分解(VMD)、改进灰狼算法(LILGWO)和最小二乘支持向量机(LSSVM)的风电功率短期预测方法。首先通过VMD方法将风电功率序列分解重构成3个复杂程度性不同的模态分量,降低风电功率的波动性;其次使用LSSVM挖掘各分量的特征信息,对各分量分别进行预测,针对LSSVM模型中重要参数的选取对预测精度影响较大问题,引入LILGWO对参数进行寻优;最后将各分量预测结果叠加重构,得到最终预测风电功率。结果以宁夏回族自治区某地区风电站实际数据为例,对未来三天分别进行预测取平均值,本文方法的预测平均绝对误差(mean absolute error,MAE)为2.7068 kW,均方根误差(root mean square error,RMSE)为2.0211,拟合程度决定系数(R-Square,R^(2))为0.9769,与对比方法3~6相比,RMSE分别降低了40.93%,25.21%,14.7%,6.24%;MAE分别降低了42.34%,28.04%,16.97%,7.77%;R^(2)分别提升了4.21%,1.78%,0.82%,0.28%。预测时长方面,BP和LSSVM平均训练时间分别是10,138 s,虽然LSSVM预测时间较长但效果最好,采用PSO、GWO、LILGWO对LSSVM进行寻优后训练时间分别平均缩短了39,44,58 s。结论仿真验证了所提方法在短期风电功率预测方面的有效性。 展开更多
关键词 电功率 短期预测 变分模态分解 近似熵 改进灰狼算法 最小二乘支持向量机
下载PDF
基于多窗宽核密度估计的风电功率超短期自适应概率预测
10
作者 王森 孙永辉 +2 位作者 侯栋宸 周衍 张文杰 《高电压技术》 EI CAS CSCD 北大核心 2024年第7期3070-3079,共10页
精准的风电功率预测是保证新型电力系统安稳运行、促进风电消纳的重要手段。针对核密度估计所求分位数在不同置信度下鲁棒性差的问题,提出多窗宽核密度估计方法,根据不同置信度生成不同窗宽的核密度估计值,实现了风电功率的超短期自适... 精准的风电功率预测是保证新型电力系统安稳运行、促进风电消纳的重要手段。针对核密度估计所求分位数在不同置信度下鲁棒性差的问题,提出多窗宽核密度估计方法,根据不同置信度生成不同窗宽的核密度估计值,实现了风电功率的超短期自适应概率预测。首先,结合风电功率曲线和数据驱动模型,建立基于改进双向长短期记忆网络的风电功率超短期确定性预测模型。其次,推导了最优窗宽核密度估计方法,并基于此构建多窗宽核密度估计误差拟合模型,在不同置信度下自适应生成最优窗宽并构建预测区间。最后,基于实际运行数据验证模型的可行性与有效性。结果表明,所提模型可有效提高确定性预测的精度和概率预测的鲁棒性。 展开更多
关键词 短期 电功率 BiLSTM 自适应概率预测 多窗宽核密度估计
下载PDF
基于低风速功率修正和损失函数改进的超短期风电功率预测
11
作者 臧海祥 赵勇凯 +3 位作者 张越 程礼临 卫志农 秦雪妮 《电力系统自动化》 EI CSCD 北大核心 2024年第7期248-257,共10页
风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖... 风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖关系。为了解决低风速下待风状态神经网络难以精确拟合的问题,模型通过预测风速并结合当前时段的风电功率对低风速段的预测功率进行修正。针对参数训练的稳定性问题,模型通过改进预测策略和共享权重,引入一种多元非线性的损失函数来提取序列间的关联性。结果表明,所提模型在多项误差指标中均优于对比模型,能够有效提升超短期风电功率的预测效果。 展开更多
关键词 短期电功率预测 功率修正 损失函数改进 神经网络模型
下载PDF
基于BP-AHP风机状态评估的超短期风电功率动态预测研究
12
作者 杨国清 王文坤 +2 位作者 王德意 刘世林 戚相成 《大电机技术》 2024年第1期29-39,共11页
针对传统风电功率预测仅考虑气象因素,且无法计及风电机组真实出力状态导致预测精度较差问题,本文提出一种计及风机状态的超短期风电功率动态预测方法。首先,为能够精确评估风机状态,将BP(error back propagation, BP)算法引入层次分析... 针对传统风电功率预测仅考虑气象因素,且无法计及风电机组真实出力状态导致预测精度较差问题,本文提出一种计及风机状态的超短期风电功率动态预测方法。首先,为能够精确评估风机状态,将BP(error back propagation, BP)算法引入层次分析法(analytic hierarchy process, AHP)的评估结构中,构建BP-AHP风机状态评估模型,实现单台风机状态评估;然后,综合考虑地形及机组排布等因素,将风电场所有风机的状态取均值作为风电场状态,利用皮尔逊相关系数衡量所评估状态与功率之间的相关性以验证评估模型合理性,并采用XGBoost构建计及风机状态的动态预测模型;最后,以陕西地区某风电场实测数据进行算例分析,验证了所提方法的可行性及有效性。 展开更多
关键词 电机组 状态评估 电功率预测 短期预测
下载PDF
基于EMD-PSO-Bi LSTM组合模型的短期风电功率预测 被引量:1
13
作者 唐杰 李彬 《自动化应用》 2024年第5期126-129,共4页
风电功率预测对风电并网的稳定运行具有重要意义。为了解决风电功率预测中的精度和模型稳定性问题,引入了EMD-PSO-BiLSTM模型。通过经验模态分解技术将原始风电功率序列分解为一系列固有模态函数,以有效捕捉数据中的多尺度特征,并为每... 风电功率预测对风电并网的稳定运行具有重要意义。为了解决风电功率预测中的精度和模型稳定性问题,引入了EMD-PSO-BiLSTM模型。通过经验模态分解技术将原始风电功率序列分解为一系列固有模态函数,以有效捕捉数据中的多尺度特征,并为每个模态序列建立了各自的预测模型。鉴于双向长短时记忆神经网络良好的泛化能力,建立了基于BiLSTM的各模态预测模型。进一步采用粒子群算法优化了BiLSTM参数,解决了模型非线性、高维、多模态等问题,获得了各模态分量的最优模型,并通过汇总各模态分量的结果得到了风电功率预测值。最后,以湖南省某风电场的实际运行数据为例,验证了EMD-PSO-BiLSTM模型可以有效提高风电功率短期预测精度。 展开更多
关键词 电功率 短期预测 经验模态分解 粒子群算法 双向长短期记忆网络
下载PDF
CEEMDAN-WPE-CLSA超短期风电功率预测方法研究
14
作者 李杰 孟凡熙 +1 位作者 牛明博 张懿璞 《大连交通大学学报》 CAS 2024年第2期101-108,共8页
提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,... 提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,降低原始序列的非线性和波动性;其次,根据加权排列熵计算各模态分量间的相似性并对相似的分量进行重组,以修正自适应噪声完全集合经验模态分解的过度分解问题,使得修正后的模态分量更具规律性;最后,将重组后的分量输入卷积长短期记忆网络进行时序建模,并利用自注意力机制对卷积长短期记忆网络的神经元权重进行重新分配,提高了卷积长短期记忆网络对输入特征不确定性的适应能力。在此基础上,明确了自注意力机制和自适应噪声完全集合经验模态分解、加权排列熵在风电功率预测中的作用机制,以及风电功率信号包含的重要物理信息,证明了自适应噪声完全集合经验模态分解、加权排列熵以及自注意力机制在风电功率信号模态分解和长短期记忆网络隐层输出权重分配中的有效性。 展开更多
关键词 短期电功率预测 自适应噪声完全集合经验模态分解 加权排列熵 卷积长短期记忆网络 自注意力机制
下载PDF
基于注意力机制的IWOA-BiGRU超短期风电功率预测
15
作者 向玲 金子皓 李林春 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第4期87-93,102,共8页
超短期风电功率预测对电力系统调度及大规模风电并网具有重要作用。为得到准确可靠的风电功率预测结果,针对风电功率数据非线性和时序性的特点,提出一种基于IWOA-AT-BiGRU的超短期风电功率预测方法。首先,提出改进鲸鱼优化算法(improved... 超短期风电功率预测对电力系统调度及大规模风电并网具有重要作用。为得到准确可靠的风电功率预测结果,针对风电功率数据非线性和时序性的特点,提出一种基于IWOA-AT-BiGRU的超短期风电功率预测方法。首先,提出改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)来优化风电功率预测模型的超参数,加速模型收敛,提高预测准确度;然后,在BiGRU中加入注意力机制(AT),AT用来加强重要信息对风功率的影响,BiGRU同时考虑数据的正反向信息,充分挖掘数据的时序特征;最后,通过某风电场实测数据进行实验,结果表明提出的方法预测准确度均高于其他对比模型,具有良好的预测性能。 展开更多
关键词 电功率 短期预测 注意力机制 改进鲸鱼优化算法 双向门控循环单元
下载PDF
基于SSA-VMD-INGO-RF的短期风电功率预测
16
作者 汪繁荣 梅涛 +2 位作者 张旭东 汪筠涵 肖悦 《现代电子技术》 北大核心 2024年第24期88-96,共9页
为解决风电功率输出的不确定性、弱化电网波动以及电网的提质增效等问题,提出一种基于变分模态分解(VMD)、Piecewise混沌映射、北方苍鹰优化(NGO)算法和随机森林(RF)的组合模型。该模型采用麻雀搜索算法(SSA)对VMD核心参数(K值和惩罚系... 为解决风电功率输出的不确定性、弱化电网波动以及电网的提质增效等问题,提出一种基于变分模态分解(VMD)、Piecewise混沌映射、北方苍鹰优化(NGO)算法和随机森林(RF)的组合模型。该模型采用麻雀搜索算法(SSA)对VMD核心参数(K值和惩罚系数α)进行寻优,通过SSA-VMD将原始功率序列分解为多个有限带宽的特征模态分量,以降低原始数据的复杂度和非平稳性对预测精度的影响;然后,构建模态分量并在改进的北方苍鹰算法优化随机森林中进行预测;最后,将各分量预测结果叠加,得到最终预测值。以内蒙古某风电场的实测数据为研究对象,将所提组合模型与另外6种模型进行比较。结果表明,所设计模型预测结果平均绝对百分比误差(MAPE)为1.734%,均方根误差为0.068 MW,R^(2)为0.992,证明了该模型的有效性。 展开更多
关键词 短期电功率预测 北方苍鹰算法 Piecewise混沌映射 随机森林 变分模态分解 麻雀搜索算法
下载PDF
基于自适应时序表征和多级注意力的超短期风电功率预测 被引量:4
17
作者 张越 臧海祥 +3 位作者 程礼临 刘璟璇 卫志农 孙国强 《电力自动化设备》 EI CSCD 北大核心 2024年第2期117-125,共9页
针对风电功率数据包含的多尺度时间信息难以描述、现有方法未充分考虑气象因素对于风电功率动态耦合的影响而导致的预测性能下降等问题,提出了一种基于自适应时序表征和多级注意力的超短期风电功率预测方法。采用时序嵌入层对风电功率... 针对风电功率数据包含的多尺度时间信息难以描述、现有方法未充分考虑气象因素对于风电功率动态耦合的影响而导致的预测性能下降等问题,提出了一种基于自适应时序表征和多级注意力的超短期风电功率预测方法。采用时序嵌入层对风电功率序列进行表征以获取其周期、非周期模式,并引入自注意力捕捉高维风电功率序列的自相关性;利用交叉注意力重构风电功率与气象因素,形成包含两者耦合关系的多维特征序列;利用一维卷积神经网络沿时间、特征方向分别挖掘多维特征序列的时间相关性和空间相关性,进而利用长短期记忆网络提取相应的时序特征,并将所得时序特征经全局注意力去噪和门控机制融合后输入全连接层,分别进行点预测和区间预测。实验结果表明,所提方法能够获得准确的点预测值和可靠的预测区间。 展开更多
关键词 电功率 短期预测 多级注意力 深度学习 时空相关性 预测 区间预测
下载PDF
基于经验模态分解和深度学习的短期风电功率预测
18
作者 唐杰 李彬 +2 位作者 刘白杨 邵武 易资兴 《邵阳学院学报(自然科学版)》 2024年第2期1-9,共9页
精准的风电功率预测有利于全网电力平衡、系统安全稳定运行和节能减耗。提出一种基于经验模态分解(empirical mode decomposition, EMD)、核主成分分析(kernel principal component analysis, KPCA)和长短期记忆(long short-term memory... 精准的风电功率预测有利于全网电力平衡、系统安全稳定运行和节能减耗。提出一种基于经验模态分解(empirical mode decomposition, EMD)、核主成分分析(kernel principal component analysis, KPCA)和长短期记忆(long short-term memory, LSTM)神经网络的短期风功率预测模型。采用EMD技术将多维气象序列分解为多个固有模态分量,以挖掘原始数据的主要特征并消除噪声;引入KPCA进行降维处理,提取数据的非线性特征;使用LSTM神经网络对特征提取的序列进行学习并完成预测,获得风电功率预测的最终结果。使用所提出的模型对新疆某一风电场风电功率进行预测,将预测结果与其他模型对比。结果表明,该预测模型能改善预测性能,降低风电功率预测误差。 展开更多
关键词 电功率 短期预测 经验模态分解 核主成分分析 神经网络
下载PDF
改进BBO优化BP神经网络的短期风电功率预测模型
19
作者 罗丹 章若冰 +1 位作者 余娟 谭芝娴 《绿色科技》 2024年第12期263-269,共7页
为了提高预测模型在处理风电功率时间序列数据中的复杂模式和非线性特征时的识别能力,提出了一种新的预测模型。通过改进完全自适应噪声集合经验模态分解算法进行信号处理,然后根据改进生物地理学优化算法对反向传播神经网络进行初始权... 为了提高预测模型在处理风电功率时间序列数据中的复杂模式和非线性特征时的识别能力,提出了一种新的预测模型。通过改进完全自适应噪声集合经验模态分解算法进行信号处理,然后根据改进生物地理学优化算法对反向传播神经网络进行初始权重优化,进一步提升短期风电功率预测的准确度和稳定性。通过实际应用案例表明,与其他优化算法相比,提出的模型在MAE、RMSE和MAPE上的表现分别平均提高了43.21%、37.98%和36.84%,显示出更高的预测准确度,仿真结果验证了本方法在短期风电功率预测领域的效果及其明显的优势。 展开更多
关键词 短期电功率预测 完全自适应噪声集合经验模态分解 反向传播神经网络 生物地理学优化算法
下载PDF
基于EMD-PCA-LSTM的短期风电功率预测研究
20
作者 耿运涛 《船电技术》 2024年第11期20-23,共4页
精准的风电功率预测有利于全网电力平衡、系统安全稳定运行和节能减耗,提出一种基于EMD-PCA-LSTM的短期风电功率预测模型。先采用经验模态分解技术将多维气象序列分解为多个固有模态分量,以挖掘原始数据的主要特征并消除噪声。再引入主... 精准的风电功率预测有利于全网电力平衡、系统安全稳定运行和节能减耗,提出一种基于EMD-PCA-LSTM的短期风电功率预测模型。先采用经验模态分解技术将多维气象序列分解为多个固有模态分量,以挖掘原始数据的主要特征并消除噪声。再引入主成分分析进行降维处理,提取数据的非线性特征,最后使用长短期记忆神经网络进行预测。通过与多种预测模型进行比较,证明了该模型在预测精度方面的卓越表现。 展开更多
关键词 电功率 短期预测 经验模态分解 主成分分析 神经网络
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部