期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
深度多模态不确定度的短视频事件检测方法
1
作者
苏育挺
王富铕
井佩光
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2024年第5期36-45,共10页
随着短视频的快速发展,短视频事件检测任务受到越来越多的关注。现有短视频事件检测研究普遍采用深度神经网络来获得确定的检测结果,但是网络忽略了不确定度的影响从而导致错误的预测结果也会产生过度置信的决策。为了解决上述问题,本...
随着短视频的快速发展,短视频事件检测任务受到越来越多的关注。现有短视频事件检测研究普遍采用深度神经网络来获得确定的检测结果,但是网络忽略了不确定度的影响从而导致错误的预测结果也会产生过度置信的决策。为了解决上述问题,本文提出了一个深度多模态不确定度网络的短视频事件检测方法。首先,该方法在传统域分离网络中嵌入变分层,用来获得预测分布;然后,将视觉模态信息和音频模态信息输入到网络中,利用该方法所构建的独立性和相关性损失可以获得包含不确定度的音频模态共、私有域预测分布以及视觉模态共、私有域预测分布;最后,提出了一个不确定度判别法则用来筛选4个域的预测分布,从而得到最终的预测结果。在公开数据集(UCF-101与HMDB51)和新构建的短视频事件检测数据集上进行了实验。实验结果表明,面对不同的深度分类方法以及不同的数据集,本文方法不仅有着更高的分类准确率,还可以对输出结果进行不确定度估计,针对音频的干扰也具有较强的鲁棒性。
展开更多
关键词
深度神经网络
短视频事件检测
域分离网络
变分层
模态不确定度
下载PDF
职称材料
题名
深度多模态不确定度的短视频事件检测方法
1
作者
苏育挺
王富铕
井佩光
机构
天津大学电气自动化与信息工程学院
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2024年第5期36-45,共10页
基金
国家自然科学基金(61802277)。
文摘
随着短视频的快速发展,短视频事件检测任务受到越来越多的关注。现有短视频事件检测研究普遍采用深度神经网络来获得确定的检测结果,但是网络忽略了不确定度的影响从而导致错误的预测结果也会产生过度置信的决策。为了解决上述问题,本文提出了一个深度多模态不确定度网络的短视频事件检测方法。首先,该方法在传统域分离网络中嵌入变分层,用来获得预测分布;然后,将视觉模态信息和音频模态信息输入到网络中,利用该方法所构建的独立性和相关性损失可以获得包含不确定度的音频模态共、私有域预测分布以及视觉模态共、私有域预测分布;最后,提出了一个不确定度判别法则用来筛选4个域的预测分布,从而得到最终的预测结果。在公开数据集(UCF-101与HMDB51)和新构建的短视频事件检测数据集上进行了实验。实验结果表明,面对不同的深度分类方法以及不同的数据集,本文方法不仅有着更高的分类准确率,还可以对输出结果进行不确定度估计,针对音频的干扰也具有较强的鲁棒性。
关键词
深度神经网络
短视频事件检测
域分离网络
变分层
模态不确定度
Keywords
deep neural network
micro-video event detection
domain separation network
variational layer
modal uncertainty
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
深度多模态不确定度的短视频事件检测方法
苏育挺
王富铕
井佩光
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部